Convergence analysis of an optimization algorithm for computing
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 5-20
Cet article a éte moissonné depuis la source Math-Net.Ru
A new optimization algorithm for computing the largest eigenvalue of a real symmetric matrix is considered. The algorithm is based on a sequence of plane rotations increasing the sum of the matrix entries. It is proved that the algorithm converges linearly and it is shown that it can be regarded as a relaxation method for the Rayleigh quotient.
@article{ZNSL_2007_346_a0,
author = {A. N. Borzykh},
title = {Convergence analysis of an optimization algorithm for computing},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--20},
year = {2007},
volume = {346},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a0/}
}
A. N. Borzykh. Convergence analysis of an optimization algorithm for computing. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 5-20. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a0/
[1] Dzh. Kh. Uilkinson, Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970
[2] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Lan, SPb., 2002
[3] B. Parlett, Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl
[4] Kh. D. Ikramov, Nesimmetrichnaya problema sobstvennykh znachenii, Nauka, M., 1991 | MR
[5] Dzh. Demmel, Vychislitelnaya lineinaya algebra, Mir, M., 2001
[6] A. N. Borzykh, “Effektivnaya lokalizatsiya sobstvennykh znachenii simmetrichnykh matrits vysokogo poryadka”, Nauchnaya sessiya MIFI-2006, Sbornik nauchnykh trudov. Tom 7, Izd. MIFI, M., 2006, 159–160