One generalization of the Gagliardo inequality
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 120-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose $u_1,u_2,\dots,u_n\in\mathcal D(\mathbb R^k)$ and suppose we are given a certain set of linear combinations of the form $\sum_{i,j}a_{ij}^{(l)}\partial_j u_i$. Sufficient conditions in terms of the coefficients $a_{ij}^{(l)}$ are indicated for the norms
$\|u_i\|_{L^{\frac k{k-1}}}$ to be controlled in terms of the $L^1$-norms these linear combinations. These conditions are most transparent if $k=2$. The classical Gagliardo inequality
corresponds to a sole function $u_1=u$ and the collection of its pure partial derivatives $\partial_1 u,\dots,\partial_k u$.
@article{ZNSL_2007_345_a7,
author = {D. V. Maksimov},
title = {One generalization of the {Gagliardo} inequality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--139},
publisher = {mathdoc},
volume = {345},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a7/}
}
D. V. Maksimov. One generalization of the Gagliardo inequality. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 120-139. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a7/