On singular integrals related to the Littlewood--Paley inequality for arbitrary intervals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 113-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The proof of the inequality mentioned in the title requires the knowledge of the fact that operators of a certain class are Calderór–Zygmund singular integral operators. We slightly extend this class.
@article{ZNSL_2007_345_a6,
author = {S. V. Kislyakov and D. V. Parilov},
title = {On singular integrals related to the {Littlewood--Paley} inequality for arbitrary intervals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--119},
publisher = {mathdoc},
volume = {345},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a6/}
}
TY - JOUR AU - S. V. Kislyakov AU - D. V. Parilov TI - On singular integrals related to the Littlewood--Paley inequality for arbitrary intervals JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 113 EP - 119 VL - 345 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a6/ LA - ru ID - ZNSL_2007_345_a6 ER -
S. V. Kislyakov; D. V. Parilov. On singular integrals related to the Littlewood--Paley inequality for arbitrary intervals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 113-119. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a6/