On singular integrals related to the Littlewood–Paley inequality for arbitrary intervals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 113-119
Cet article a éte moissonné depuis la source Math-Net.Ru
The proof of the inequality mentioned in the title requires the knowledge of the fact that operators of a certain class are Calderór–Zygmund singular integral operators. We slightly extend this class.
@article{ZNSL_2007_345_a6,
author = {S. V. Kislyakov and D. V. Parilov},
title = {On singular integrals related to the {Littlewood{\textendash}Paley} inequality for arbitrary intervals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--119},
year = {2007},
volume = {345},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a6/}
}
TY - JOUR AU - S. V. Kislyakov AU - D. V. Parilov TI - On singular integrals related to the Littlewood–Paley inequality for arbitrary intervals JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 113 EP - 119 VL - 345 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a6/ LA - ru ID - ZNSL_2007_345_a6 ER -
S. V. Kislyakov; D. V. Parilov. On singular integrals related to the Littlewood–Paley inequality for arbitrary intervals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 113-119. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a6/
[1] S. V. Kislyakov, D. V. Parilov, “O teoreme Litlvuda–Peli dlya proizvolnykh intervalov”, Zap. nauchn. semin. POMI, 327, 2005, 98–113
[2] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamer, 1 (1985), 1–13 | MR
[3] J. Bourgain, “On square functions on the trigonometric system”, Bull. Soc. Math. Belg., 37:1 (1985), 20–26 | MR | Zbl
[4] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, Moskva, 1965 | MR