Radial behavior of positive harmonic Bloch functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 105-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ be a strictly positive harmonic Bloch function on the upper half-space ${\mathbb R}_+^{d+1}$. Then the set $$ \left\{x\in{\mathbb R}^d:\ \limsup_{y\to 0+}|{\log u(x, y)}|\infty\right\} $$ has the maximal Hausdorff dimension.
@article{ZNSL_2007_345_a5,
     author = {E. Doubtsov},
     title = {Radial behavior of positive harmonic {Bloch} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {345},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Radial behavior of positive harmonic Bloch functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 105
EP  - 112
VL  - 345
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/
LA  - ru
ID  - ZNSL_2007_345_a5
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Radial behavior of positive harmonic Bloch functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 105-112
%V 345
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/
%G ru
%F ZNSL_2007_345_a5
E. Doubtsov. Radial behavior of positive harmonic Bloch functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 105-112. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/