Radial behavior of positive harmonic Bloch functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 105-112 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $u$ be a strictly positive harmonic Bloch function on the upper half-space ${\mathbb R}_+^{d+1}$. Then the set $$ \left\{x\in{\mathbb R}^d:\ \limsup_{y\to 0+}|{\log u(x, y)}|<\infty\right\} $$ has the maximal Hausdorff dimension.
@article{ZNSL_2007_345_a5,
     author = {E. Doubtsov},
     title = {Radial behavior of positive harmonic {Bloch} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--112},
     year = {2007},
     volume = {345},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Radial behavior of positive harmonic Bloch functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 105
EP  - 112
VL  - 345
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/
LA  - ru
ID  - ZNSL_2007_345_a5
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Radial behavior of positive harmonic Bloch functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 105-112
%V 345
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/
%G ru
%F ZNSL_2007_345_a5
E. Doubtsov. Radial behavior of positive harmonic Bloch functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 105-112. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a5/

[1] J. J. Donaire, Conjuntos excepcionales para las classes de Zygmund, Thesis, Barcelona, 1995

[2] E. S. Dubtsov, “Proizvodnye regulyarnykh mer”, Algebra i analiz, 19:2 (2007), 86–104 | MR | Zbl

[3] G. J. Hungerford, Boundaries of smooth sets and singular sets of Blaschke products in the little Bloch class, Thesis, California Inst. of Technology, Pasadena, 1988 | MR

[4] J. G. Llorente, “Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach”, Potential Anal., 9:3 (1998), 229–260 | DOI | MR | Zbl

[5] N. G. Makarov, “O radialnom povedenii funktsii Blokha”, DAN SSSR, 309:3 (1989), 275–278 | MR

[6] N. G. Makarov, “Veroyatnostnye metody v teorii konformnykh otobrazhenii”, Algebra i analiz, 1:1 (1989), 3–59 | Zbl

[7] A. Nicolau, “Radial behaviour of harmonic Bloch functions and their area function”, Indiana Univ. Math. J., 48:4 (1999), 1213–1236 | DOI | MR | Zbl