@article{ZNSL_2007_345_a4,
author = {M. F. Gamal'},
title = {On {Toeplitz} operators similar to unilateral shifts},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {85--104},
year = {2007},
volume = {345},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a4/}
}
M. F. Gamal'. On Toeplitz operators similar to unilateral shifts. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 85-104. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a4/
[1] M. Rosenblum, J. Rovnyak, Hardy classes and operator theory, Oxford Math. Monogr., The Clarendon Press Oxford University Press, New York, 1985 | MR | Zbl
[2] D. N. Clark, “On Toeplitz operators with unimodular symbols”, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 59–68 | MR
[3] D. N. Clark, “Perturbation and similarity of Toeplitz operators”, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., 48, Birkhäuser, Basel, 1990, 235–243 | MR
[4] D. N. Clark, “On Toeplitz operators with loops”, J. Operator Theory, 4 (1980), 37–54 | MR | Zbl
[5] D. N. Clark, “On a similarity theory for rational Toeplitz operators”, J. Reine Angew. Math., 320 (1980), 6–31 | DOI | MR | Zbl
[6] D. Wang, “Similarity theory of smooth Toeplitz operators”, J. Operator Theory, 12 (1984), 319–330 | MR
[7] D. V. Yakubovich, “Riemann surface models of Toeplitz operator”, Toeplitz Operators and Spectral Function Theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 305–415 | MR
[8] D. V. Yakubovich, “K spektralnoi teorii operatorov Teplitsa s gladkim simvolom”, Algebra i analiz, 3:4 (1991), 208–226 | MR
[9] D. V. Yakubovich, “Dual piecewise analytic bundle shift models of linear operators”, J. Funct. Anal., 136 (1996), 294–330 | DOI | MR | Zbl
[10] M. F. Gamal', “On Toeplitz operators similar to isometries”, J. Operator Theory (to appear) | MR
[11] H. Bercovici, “Notes on invariant subspaces”, Bull. Amer. Math. Soc., 23 (1990), 1–36 | DOI | MR | Zbl
[12] E. Kollingvud, A. Lovater, Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR
[13] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959 | MR | Zbl
[14] P. R. Ahern, D. N. Clark, “On inner functions with $H^p$ derivative”, Michigan Math. J., 21 (1974), 115–127 | DOI | MR | Zbl
[15] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR
[16] B. D. MacCluer, J. H. Shapiro, “Angular derivatives and compact composition operators on the Hardy and Bergmann spaces”, Canadian J. Math., 38 (1986), 878–906 | DOI | MR | Zbl
[17] D. Mejía, Ch. Pommerenke, “The analytic fixed point function in the disk”, Comput. Methods Funct. Theory, 5:2 (2005), 275–299 | MR | Zbl
[18] D. Mejía, Ch. Pommerenke, “The analytic fixed point function, II”, Revista Colombiana de Matematicas, 40 (2006), 39–52 | MR | Zbl
[19] A. Yu. Solynin, “Analiticheskaya funktsiya nepodvizhnoi tochki i ee svoistva”, Zap. nauchn. semin. POMI, 337, 2006, 238–252 | MR | Zbl
[20] A. Yu. Solynin, “Hyperbolic convexity and the analytic fixed point function”, Proc. Amer. Math. Soc., 135 (2007), 1181–1186 | DOI | MR | Zbl