On Toeplitz operators similar to unilateral shifts
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 85-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $T$ be a Toeplitz operator on the Hardy space $H^2$ on the unit circle, and let the symbol of $T$ be of the form $\varphi/\psi$, where $\varphi$ is an inner function, $\psi$ is a finite Blaschke product, and $\deg\psi\le\deg\varphi$. D. N. Clark proved that such $T$ is similar to an isometry. In this paper we find necessary and sufficient conditions to such $T$ be similar to a unilateral shift.
@article{ZNSL_2007_345_a4,
     author = {M. F. Gamal'},
     title = {On {Toeplitz} operators similar to unilateral shifts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--104},
     year = {2007},
     volume = {345},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a4/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - On Toeplitz operators similar to unilateral shifts
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 85
EP  - 104
VL  - 345
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a4/
LA  - ru
ID  - ZNSL_2007_345_a4
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T On Toeplitz operators similar to unilateral shifts
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 85-104
%V 345
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a4/
%G ru
%F ZNSL_2007_345_a4
M. F. Gamal'. On Toeplitz operators similar to unilateral shifts. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 85-104. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a4/

[1] M. Rosenblum, J. Rovnyak, Hardy classes and operator theory, Oxford Math. Monogr., The Clarendon Press Oxford University Press, New York, 1985 | MR | Zbl

[2] D. N. Clark, “On Toeplitz operators with unimodular symbols”, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 59–68 | MR

[3] D. N. Clark, “Perturbation and similarity of Toeplitz operators”, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., 48, Birkhäuser, Basel, 1990, 235–243 | MR

[4] D. N. Clark, “On Toeplitz operators with loops”, J. Operator Theory, 4 (1980), 37–54 | MR | Zbl

[5] D. N. Clark, “On a similarity theory for rational Toeplitz operators”, J. Reine Angew. Math., 320 (1980), 6–31 | DOI | MR | Zbl

[6] D. Wang, “Similarity theory of smooth Toeplitz operators”, J. Operator Theory, 12 (1984), 319–330 | MR

[7] D. V. Yakubovich, “Riemann surface models of Toeplitz operator”, Toeplitz Operators and Spectral Function Theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 305–415 | MR

[8] D. V. Yakubovich, “K spektralnoi teorii operatorov Teplitsa s gladkim simvolom”, Algebra i analiz, 3:4 (1991), 208–226 | MR

[9] D. V. Yakubovich, “Dual piecewise analytic bundle shift models of linear operators”, J. Funct. Anal., 136 (1996), 294–330 | DOI | MR | Zbl

[10] M. F. Gamal', “On Toeplitz operators similar to isometries”, J. Operator Theory (to appear) | MR

[11] H. Bercovici, “Notes on invariant subspaces”, Bull. Amer. Math. Soc., 23 (1990), 1–36 | DOI | MR | Zbl

[12] E. Kollingvud, A. Lovater, Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[13] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959 | MR | Zbl

[14] P. R. Ahern, D. N. Clark, “On inner functions with $H^p$ derivative”, Michigan Math. J., 21 (1974), 115–127 | DOI | MR | Zbl

[15] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR

[16] B. D. MacCluer, J. H. Shapiro, “Angular derivatives and compact composition operators on the Hardy and Bergmann spaces”, Canadian J. Math., 38 (1986), 878–906 | DOI | MR | Zbl

[17] D. Mejía, Ch. Pommerenke, “The analytic fixed point function in the disk”, Comput. Methods Funct. Theory, 5:2 (2005), 275–299 | MR | Zbl

[18] D. Mejía, Ch. Pommerenke, “The analytic fixed point function, II”, Revista Colombiana de Matematicas, 40 (2006), 39–52 | MR | Zbl

[19] A. Yu. Solynin, “Analiticheskaya funktsiya nepodvizhnoi tochki i ee svoistva”, Zap. nauchn. semin. POMI, 337, 2006, 238–252 | MR | Zbl

[20] A. Yu. Solynin, “Hyperbolic convexity and the analytic fixed point function”, Proc. Amer. Math. Soc., 135 (2007), 1181–1186 | DOI | MR | Zbl