Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 55-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Theta$ be an inner function in the upper half plane and let $K_\Theta=H^2\ominus\Theta H^2$ be the associated model subspace of the Hardy space $H^2$. We call a non-negative function $\omega$ $\Theta$-admissible if in the space $K_\Theta$ there exists a non-zero function $f\in K_\Theta$ such that $|f|\leq\omega$ a.e. on $\mathbb{R}$. We give some sufficient conditions of $\Theta$-admissibility for the case when $\Theta$ is meromorphic and $\arg\Theta$ grows fast ($(\arg\Theta)'$ tends to infinity).
@article{ZNSL_2007_345_a3,
     author = {Yu. S. Belov},
     title = {Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--84},
     year = {2007},
     volume = {345},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a3/}
}
TY  - JOUR
AU  - Yu. S. Belov
TI  - Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 55
EP  - 84
VL  - 345
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a3/
LA  - ru
ID  - ZNSL_2007_345_a3
ER  - 
%0 Journal Article
%A Yu. S. Belov
%T Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 55-84
%V 345
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a3/
%G ru
%F ZNSL_2007_345_a3
Yu. S. Belov. Admissibility criteria for model subspaces with fast growth of the argument of the generating inner function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 55-84. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a3/

[1] A. D. Baranov, “Polynomials in the de Branges spaces of entire functions”, Ark. Mat., 44:1 (2006), 16–38 | DOI | MR | Zbl

[2] Yu. S. Belov, “Neobkhodimye usloviya dopustimosti dlya nekotorykh klassov modelnykh podprostranstv” (to appear)

[3] A. D. Baranov, V. P. Khavin, “Dopustimye mazhoranty dlya modelnykh podprostranstv i argumenty vnutrennikh funktsii”, Funktsionalnyi analiz i ego prilozheniya, 40:4 (2006), 2–21 | MR

[4] A. D. Baranov, A. A. Borichev, V. P. Havin, “Admissible majorants for meromorphic functions with fixed poles”, Indiana University Math. J. (to appear)

[5] V. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, 1994 | MR

[6] V. P. Havin, J. Mashreghi, “Admissible majorants for model subspaces of $H^2$. Part 1: slow winding of the generating inner function”, Can. J. Math., 55:6 (2003), 1231–1263 | DOI | MR | Zbl

[7] V. P. Havin, J. Mashreghi, “Admissible majorants for model subspaces of $H^2$. Part 2: fast winding of the generating inner function”, Can. J. Math., 55:6 (2003), 1264–1301 | DOI | MR | Zbl

[8] P. Koosis, The Logarithmic integral, I, Cambridge Stud. Adv. Math., 12, Cambridge University Press, Cambridge, 1988 | MR | Zbl

[9] V. P. Khavin, Dzh. Mashregi, F. Nazarov, “Teorema Berlinga–Malyavena o multiplikatore: sedmoe dokazatelstvo”, Algebra i Analiz, 17:5 (2005), 3–68 | MR