Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 25-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper compares sequences of independent mean zero random variables in a rearrangement invariant space $X$ on $[0,1]$ with sequences of disjoint copies of individual terms in the corresponding rearrangement invariant space $Z_X^2$ on $[0,\infty)$. Principal results of the paper show that these sequences are equivalent in $X$ and $Z_X^2$ respectively if and only if $X$ possesses the (so-called) Kruglov property. We also apply our technique to complement well-known results concerning isomorphism between rearrangement invariant spaces on $[0,1]$ and $[0,\infty)$.
@article{ZNSL_2007_345_a1,
     author = {S. V. Astashkin and F. A. Sukochev},
     title = {Series of independent mean zero random variables in rearrangement invariant spaces with the {Kruglov} property},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--50},
     year = {2007},
     volume = {345},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - F. A. Sukochev
TI  - Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 25
EP  - 50
VL  - 345
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/
LA  - ru
ID  - ZNSL_2007_345_a1
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A F. A. Sukochev
%T Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 25-50
%V 345
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/
%G ru
%F ZNSL_2007_345_a1
S. V. Astashkin; F. A. Sukochev. Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 25-50. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/

[1] W. B. Johnson and G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17 (1989), 789–808 | DOI | MR | Zbl

[2] J. Hoffman-Jørgensen, “Sums of independent Banach space valued random variables”, Studia Math., 52 (1974), 258–286 | MR

[3] S. V. Astashkin and F. A. Sukochev, “Sums of independent random variables in rearrangement invariant spaces: an operator approach”, Israel J. Math., 145 (2005), 125–156 | DOI | MR | Zbl

[4] S. V. Astashkin, F. A. Sukochev, “Sravnenie summ nezavisimykh i diz'yunktnykh funktsii v simmetrichnykh prostranstvakh”, Matem. zametki, 76:4 (2004), 483–489 | MR | Zbl

[5] M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, Cambridge University Press, 1994 | MR

[6] V. M. Kruglov, “Zamechanie k teorii bezgranichno delimykh zakonov”, Teor. veroyatn. i ee primen., 15:2 (1970), 330–336 | MR | Zbl

[7] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, 217, Mem. Amer. Math. Soc., 19, 1979 | MR

[8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II: Function Spaces, Ergebnisse der Mathematic und ihrer Grenzgebiete, 97, no. Berlin-New York, Springer-Verlag, 1979 | MR | Zbl

[9] V. A. Rodin and E. M. Semenov, “Rademacher series in symmetric spaces”, Anal. Math., 1 (1975), 207–222 | DOI | MR | Zbl

[10] B. S. Mityagin, “Gomotopicheskaya struktura lineinoi gruppy banakhova prostranstva”, Usp. matem. nauk, 25 (1970), 59–103 | Zbl

[11] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[12] Yu. V. Prokhorov, “Silnaya ustoichivost summ i beskonechno delimykh zakonov”, Teoriya veroyatn. i ee primen., 3:2 (1958), 153–165 | Zbl

[13] S. Kwapień and W. A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, 1992 | MR | Zbl

[14] E. Lukach, Kharakteristicheskie funktsii, Nauka, M., 1964 | MR

[15] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984

[16] A. A. Borovkov, Teoriya veroyatnostei, Nauka, M., 1976 | MR

[17] V. M. Kruglov, S. N. Antonov, “Esche raz ob asimptoticheskom povedenii beskonechno delimykh raspredelenii v banakhovom prostranstve”, Teoriya veroyatn. i ee primen., 27:4 (1982), 625–642 | MR | Zbl

[18] N. L. Carothers and S. J. Dilworth, “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 194 (1988), 221–226 | DOI | MR

[19] E. M. Stein, Topics on harmonic analysis related to the Littlewood–Paley theory, Ann. Math. Studies, 63, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[20] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl