Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 25-50
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper compares sequences of independent mean zero random variables in a rearrangement invariant space $X$ on $[0,1]$ with sequences of disjoint copies of individual terms in the corresponding rearrangement invariant space $Z_X^2$ on $[0,\infty)$. Principal results of the paper show that these sequences are equivalent in $X$ and $Z_X^2$ respectively
if and only if $X$ possesses the (so-called) Kruglov property. We also apply our technique to complement well-known results concerning isomorphism between rearrangement invariant spaces on $[0,1]$ and $[0,\infty)$.
@article{ZNSL_2007_345_a1,
author = {S. V. Astashkin and F. A. Sukochev},
title = {Series of independent mean zero random variables in rearrangement invariant spaces with the {Kruglov} property},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--50},
publisher = {mathdoc},
volume = {345},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/}
}
TY - JOUR AU - S. V. Astashkin AU - F. A. Sukochev TI - Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 25 EP - 50 VL - 345 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/ LA - ru ID - ZNSL_2007_345_a1 ER -
%0 Journal Article %A S. V. Astashkin %A F. A. Sukochev %T Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property %J Zapiski Nauchnykh Seminarov POMI %D 2007 %P 25-50 %V 345 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/ %G ru %F ZNSL_2007_345_a1
S. V. Astashkin; F. A. Sukochev. Series of independent mean zero random variables in rearrangement invariant spaces with the Kruglov property. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 25-50. http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a1/