On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 5-24
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that each translation and dilation invariant subspace $X\subset L^p(\mathbb R^n)$, $X\ne L^p(\mathbb R^n)$, is contained in a maximal translation and dilation invariant subspace of $L^p(\mathbb R^n)$. Moreover, we prove that the set of all maximal translation and dilation invariant subspaces of $L^p(\mathbb R^n)$ has the power of the continuum.
@article{ZNSL_2007_345_a0,
author = {A. B. Aleksandrov},
title = {On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0<p<1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--24},
publisher = {mathdoc},
volume = {345},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/}
}
A. B. Aleksandrov. On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0