On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 5-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that each translation and dilation invariant subspace $X\subset L^p(\mathbb R^n)$, $X\ne L^p(\mathbb R^n)$, is contained in a maximal translation and dilation invariant subspace of $L^p(\mathbb R^n)$. Moreover, we prove that the set of all maximal translation and dilation invariant subspaces of $L^p(\mathbb R^n)$ has the power of the continuum.
@article{ZNSL_2007_345_a0,
     author = {A. B. Aleksandrov},
     title = {On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0<p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {345},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 24
VL  - 345
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/
LA  - ru
ID  - ZNSL_2007_345_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-24
%V 345
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/
%G ru
%F ZNSL_2007_345_a0
A. B. Aleksandrov. On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0