On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 35, Tome 345 (2007), pp. 5-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that each translation and dilation invariant subspace $X\subset L^p(\mathbb R^n)$, $X\ne L^p(\mathbb R^n)$, is contained in a maximal translation and dilation invariant subspace of $L^p(\mathbb R^n)$. Moreover, we prove that the set of all maximal translation and dilation invariant subspaces of $L^p(\mathbb R^n)$ has the power of the continuum.
@article{ZNSL_2007_345_a0,
     author = {A. B. Aleksandrov},
     title = {On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0<p<1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--24},
     year = {2007},
     volume = {345},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 5
EP  - 24
VL  - 345
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/
LA  - ru
ID  - ZNSL_2007_345_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 5-24
%V 345
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_345_a0/
%G ru
%F ZNSL_2007_345_a0
A. B. Aleksandrov. On translation and dilation invariant subspaces of $L^p(\mathbb R^n)$, $0
                      
                    

[1] A. B. Aleksandrov, “Essays on non locally convex Hardy classes”, Lect. Notes Math., 864, 1981, 1–89 | MR | Zbl

[2] A. B. Aleksandrov, “Approksimatsiya yadrami M. Rissa v prostranstve $L^p$ pri $p1$”, Zap. nauchn. semin. POMI, 315, 2004, 5–38 | Zbl

[3] A. B. Aleksandrov, P. P. Kargaev, “Klassy Khardi garmonicheskikh v poluprostranstve fukntsii”, Algebra i analiz, 5:2 (1993), 1–73 | MR | Zbl

[4] R. Edvards, Funktsionalnyi analiz, Mir, Moskva, 1969

[5] D. M. Oberlin, “Translation-invariant operators on $L^p(G)$, $0

1$, II”, Canad. J. Math., 29:3 (1977), 626–630 | DOI | MR | Zbl

[6] Th. H. Wolff, “Counterexamples with harmonic gradients in $R\sp 3$”, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., 42, Princeton Univ. Press, Princeton, NJ, 1995, 321–384 | MR | Zbl