Polynomial-time computation of the degree of a
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 203-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider a projective algebraic variety $W$ which is an irreducible component of the set of all common zeros of a family of homogeneous polynomials of degrees less than $d$ in $n+1$ variables in zero characteristic. Consider a dominant rational morphism from $W$ to $W'$ given by homogeneous polynomials of degree $d'$. We suggest algorithms for constructing objects in general position related to this morphism. These algorithms are deterministic and polynomial in $(dd')^n$ and the size of the input.
@article{ZNSL_2007_344_a5,
     author = {A. L. Chistov},
     title = {Polynomial-time computation of the degree of a},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--239},
     year = {2007},
     volume = {344},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a5/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Polynomial-time computation of the degree of a
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 203
EP  - 239
VL  - 344
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a5/
LA  - ru
ID  - ZNSL_2007_344_a5
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Polynomial-time computation of the degree of a
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 203-239
%V 344
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a5/
%G ru
%F ZNSL_2007_344_a5
A. L. Chistov. Polynomial-time computation of the degree of a. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 203-239. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a5/

[1] L. Mamford, Algebraicheskaya geometriya. I. Kompleksnye proektivnye mnogoobraziya, Mir, M., 1979 | MR

[2] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[3] V. Khodzh, D. Pido, Metody algebraicheskoi geometrii, t. 1, Izd-vo inostrannoi literatury, M., 1954

[4] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | MR | Zbl

[5] A. L. Chistov, “Vychislenie stepenei algebraicheskikh mnogoobrazii nad polem nulevoi kharakteristiki za polinomialnoe vremya i ego prilozheniya”, Zap. nauchn. semin. POMI, 258, 1999, 7–59 | MR | Zbl

[6] A. L. Chistov, “Silnaya versiya osnovnogo razreshayuschego algoritma dlya ekzistentsionalnoi teorii pervogo poryadka veschestvenno zamknutykh polei”, Zap. nauchn. semin. POMI, 256, 1999, 168–211 | MR | Zbl

[7] A. L. Chistov, “Effektivnaya konstruktsiya lokalnykh parametrov neprivodimykh komponent algebraicheskogo mnogoobraziya”, Trudy Sankt-Peterburgskogo mat. obschestva, 7, 1999, 230–266 | MR

[8] A. L. Chistov, “Effektivnaya gladkaya stratifikatsiya algebraicheskogo mnogoobraziya v nulevoi kharakteristike i ee prilozheniya”, Zap. nauchn. semin. POMI, 266, 2000, 254–311 | MR | Zbl

[9] A. L. Chistov, “Monodromiya i kriterii neprivodimosti s algoritmicheskimi prilozheniyami v nulevoi kharakteristike”, Zap. nauchn. semin. POMI, 292, 2002, 130–152 | MR | Zbl

[10] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya, I”, Zap. nauchn. semin. POMI, 307, 2004, 189–235 | MR

[11] A. L. Chistov, “Vychislenie stepeni dominantnogo morfizma v nulevoi kharakteristike za polinomialnoe vremya, II”, Zap. nauchn. semin. POMI, 325, 2005, 181–224 | MR | Zbl

[12] J. Bochnak, M. Coste, M.-F. Roy, Géométrie Algébrique Réelle, Springer-Verlag, Berlin–Heidelberg–New York, 1987 | MR | Zbl

[13] A. L. Chistov, “Polynomial-time computation of the dimensions of components of algebraic varieties in zero-characteristic”, J. Pure Appl. Algebra, 117, 118 (1997), 145–175 | DOI | MR | Zbl