On the structure of $p$-schemes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 190-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We introduce and study an analog of $p$-groups in general scheme theory. It is proved that a scheme is a $p$-scheme if and only if so is each homogeneous component of it. Moreover, the automorphism group of a $p$-scheme is a $p$-group, and the $2$-orbit scheme of a permutation group $G$ is a $p$-scheme if and only if $G$ is a $p$-group. Both of these statements follow from the fact that the class of $p$-schemes is closed with respect to extensions.
@article{ZNSL_2007_344_a4,
     author = {I. N. Ponomarenko and A. Rahnamai Barghi},
     title = {On the structure of $p$-schemes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--202},
     year = {2007},
     volume = {344},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
AU  - A. Rahnamai Barghi
TI  - On the structure of $p$-schemes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 190
EP  - 202
VL  - 344
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/
LA  - ru
ID  - ZNSL_2007_344_a4
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%A A. Rahnamai Barghi
%T On the structure of $p$-schemes
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 190-202
%V 344
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/
%G ru
%F ZNSL_2007_344_a4
I. N. Ponomarenko; A. Rahnamai Barghi. On the structure of $p$-schemes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 190-202. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/

[1] S. Evdokimov, M. Karpinski, I. Ponomarenko, “On a new high dimensional Weisfeiler-Leman algorithm”, J. Algebraic Combin., 10 (1999), 29–45 | DOI | MR | Zbl

[2] S. Evdokimov, I. Ponomarenko, “Separability number and Schurity number of coherent configurations”, Electron. J. Combin., 7 (2000), 31 | MR

[3] I. A. Faradžev, M. H. Klin, M. E. Muzychuk, “Cellular rings and groups of automorphisms of graphs”, Investigations in Algebraic Theory of Combinatorial Objects, eds. I. A. Faradžev et al., Kluwer Acad. Publ., Dordrecht, 1994, 1–152 | MR | Zbl

[4] D. G. Higman, “Coherent configurations”, Geom. Dedicata, 4 (1975), 1–32 | DOI | MR | Zbl

[5] M. Klin, M. Muzychuk, C. Pech, A. Woldar, P.-H. Zieschang, “Association schemes on 28 points as mergings of a half-homogeneous coherent configuration”, European J. Combin., 2006 (to appear) | MR

[6] I. Ponomarenko, Cellular algebras and graph isomorphism problem, Research Report No 8592-CS, University of Bonn, 1993

[7] B. Weisfeiler (ed.), On Construction and Identification of Graphs, Lecture Notes, 558, Springer, 1976 | MR | Zbl

[8] P.-H. Zieschang, Algebraic Approach to Association Schemes, Springer, Berlin–Heidelberg, 1996 | MR | Zbl

[9] P.-H. Zieschang, Theory of Association Schemes, Monographs in Mathematics, Springer, 2005 | MR | Zbl