On the structure of $p$-schemes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 190-202

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study an analog of $p$-groups in general scheme theory. It is proved that a scheme is a $p$-scheme if and only if so is each homogeneous component of it. Moreover, the automorphism group of a $p$-scheme is a $p$-group, and the $2$-orbit scheme of a permutation group $G$ is a $p$-scheme if and only if $G$ is a $p$-group. Both of these statements follow from the fact that the class of $p$-schemes is closed with respect to extensions.
@article{ZNSL_2007_344_a4,
     author = {I. N. Ponomarenko and A. Rahnamai Barghi},
     title = {On the structure of $p$-schemes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--202},
     publisher = {mathdoc},
     volume = {344},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
AU  - A. Rahnamai Barghi
TI  - On the structure of $p$-schemes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 190
EP  - 202
VL  - 344
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/
LA  - ru
ID  - ZNSL_2007_344_a4
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%A A. Rahnamai Barghi
%T On the structure of $p$-schemes
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 190-202
%V 344
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/
%G ru
%F ZNSL_2007_344_a4
I. N. Ponomarenko; A. Rahnamai Barghi. On the structure of $p$-schemes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 190-202. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a4/