Estimates for the number of rational points on convex curves and surfaces
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 174-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma\subset \mathbb R^d$ be a bounded strictly convex surface. Denote by $k_n(\Gamma)$ the number of points in the set $\Gamma\cap\frac1n\mathbb Z^d$. We prove that $\liminf k_n(\Gamma)/n^{d-2}<\infty$ for $d\ge 3$ and $\liminf k_n(\Gamma)/\log n<\infty$ for $d=2$.
@article{ZNSL_2007_344_a3,
     author = {F. V. Petrov},
     title = {Estimates for the number of rational points on convex curves and surfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--189},
     year = {2007},
     volume = {344},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/}
}
TY  - JOUR
AU  - F. V. Petrov
TI  - Estimates for the number of rational points on convex curves and surfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 174
EP  - 189
VL  - 344
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/
LA  - ru
ID  - ZNSL_2007_344_a3
ER  - 
%0 Journal Article
%A F. V. Petrov
%T Estimates for the number of rational points on convex curves and surfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 174-189
%V 344
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/
%G ru
%F ZNSL_2007_344_a3
F. V. Petrov. Estimates for the number of rational points on convex curves and surfaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 174-189. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/

[1] V. Jarník, “Über die Gitterpunkte auf konvexen Kurven”, Math. Z., 24 (1926), 500–518 | DOI | MR

[2] A. Vershik, “Predelnaya forma vypuklykh mnogougolnikov”, Funkts. anal. i ego pril., 28 (1994), 13–20 | MR | Zbl

[3] I. Barany, “The limit shape of convex lattice polygons”, Discrete Comput. Geom., 13 (1995), 279–295 | DOI | MR | Zbl

[4] G. E. Andrews, “A lower bound for the volume of strictly convex bodies with many boundary lattice points”, Trans. Amer. Math. Soc., 106 (1963), 270–279 | DOI | MR | Zbl

[5] E. Werner, “A general geometric construction for affine surface area”, Studia Math., 132:3 (1999), 227–238 | MR | Zbl

[6] P. M. Gruber, “Baire categories in convexity”, Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, 1327–1346 | MR | Zbl

[7] I. Barany, “The technique of $M$-regions and cap coverings: a survey”, III International Conference in “Stochastic Geometry, Convex Bodies and Empirical Measures”, Part II (Mazara del Vallo, 1999), 2000, 21–38 | MR | Zbl

[8] I. Barany, A. M. Vershik, “On the number of convex lattice polytopes”, Geom. Funct. Anal., 2:4 (1992), 381–393 | DOI | MR | Zbl

[9] F. V. Petrov, “O kolichestve ratsionalnykh tochek na strogo vypukloi krivoi”, Funkts. anal. i ego pril., 40:1 (2006), 30–42 | MR | Zbl