@article{ZNSL_2007_344_a3,
author = {F. V. Petrov},
title = {Estimates for the number of rational points on convex curves and surfaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--189},
year = {2007},
volume = {344},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/}
}
F. V. Petrov. Estimates for the number of rational points on convex curves and surfaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 174-189. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/
[1] V. Jarník, “Über die Gitterpunkte auf konvexen Kurven”, Math. Z., 24 (1926), 500–518 | DOI | MR
[2] A. Vershik, “Predelnaya forma vypuklykh mnogougolnikov”, Funkts. anal. i ego pril., 28 (1994), 13–20 | MR | Zbl
[3] I. Barany, “The limit shape of convex lattice polygons”, Discrete Comput. Geom., 13 (1995), 279–295 | DOI | MR | Zbl
[4] G. E. Andrews, “A lower bound for the volume of strictly convex bodies with many boundary lattice points”, Trans. Amer. Math. Soc., 106 (1963), 270–279 | DOI | MR | Zbl
[5] E. Werner, “A general geometric construction for affine surface area”, Studia Math., 132:3 (1999), 227–238 | MR | Zbl
[6] P. M. Gruber, “Baire categories in convexity”, Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, 1993, 1327–1346 | MR | Zbl
[7] I. Barany, “The technique of $M$-regions and cap coverings: a survey”, III International Conference in “Stochastic Geometry, Convex Bodies and Empirical Measures”, Part II (Mazara del Vallo, 1999), 2000, 21–38 | MR | Zbl
[8] I. Barany, A. M. Vershik, “On the number of convex lattice polytopes”, Geom. Funct. Anal., 2:4 (1992), 381–393 | DOI | MR | Zbl
[9] F. V. Petrov, “O kolichestve ratsionalnykh tochek na strogo vypukloi krivoi”, Funkts. anal. i ego pril., 40:1 (2006), 30–42 | MR | Zbl