Estimates for the number of rational points on convex curves and surfaces
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 174-189
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma\subset \mathbb R^d$ be a bounded strictly convex surface. Denote by $k_n(\Gamma)$ the number of points in the set $\Gamma\cap\frac1n\mathbb Z^d$. We prove that
$\liminf k_n(\Gamma)/n^{d-2}\infty$ for $d\ge 3$ and $\liminf k_n(\Gamma)/\log n\infty$ for $d=2$.
@article{ZNSL_2007_344_a3,
author = {F. V. Petrov},
title = {Estimates for the number of rational points on convex curves and surfaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--189},
publisher = {mathdoc},
volume = {344},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/}
}
F. V. Petrov. Estimates for the number of rational points on convex curves and surfaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 174-189. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a3/