Combinatorial PL fiber bundles and fragmentation of a~fiberwise homeomorphism
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 56-173
Voir la notice de l'article provenant de la source Math-Net.Ru
Among other things, we prove that for any compact PL-manifold $X$ there is a homotopy equivalence $BPL(X)\approx BT(X)$, where $T(X)$ is the category of abstract aggregations of triangulations of $X$. As a result, we get a functorial pure combinatorial models for PL fiber bundles. Special attention is paid to the case $X=\mathbb R^n$ and the combinatorial model
of the Gauss map of a combinatorial manifold. The key trick which makes the proof possible is a collection of lemmas describing the fragmentation of a fiberwise homeomorphism.
@article{ZNSL_2007_344_a2,
author = {N. E. Mnev},
title = {Combinatorial {PL} fiber bundles and fragmentation of a~fiberwise homeomorphism},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {56--173},
publisher = {mathdoc},
volume = {344},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/}
}
N. E. Mnev. Combinatorial PL fiber bundles and fragmentation of a~fiberwise homeomorphism. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 56-173. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/