Combinatorial PL fiber bundles and fragmentation of a~fiberwise homeomorphism
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 56-173

Voir la notice de l'article provenant de la source Math-Net.Ru

Among other things, we prove that for any compact PL-manifold $X$ there is a homotopy equivalence $BPL(X)\approx BT(X)$, where $T(X)$ is the category of abstract aggregations of triangulations of $X$. As a result, we get a functorial pure combinatorial models for PL fiber bundles. Special attention is paid to the case $X=\mathbb R^n$ and the combinatorial model of the Gauss map of a combinatorial manifold. The key trick which makes the proof possible is a collection of lemmas describing the fragmentation of a fiberwise homeomorphism.
@article{ZNSL_2007_344_a2,
     author = {N. E. Mnev},
     title = {Combinatorial {PL} fiber bundles and fragmentation of a~fiberwise homeomorphism},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--173},
     publisher = {mathdoc},
     volume = {344},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/}
}
TY  - JOUR
AU  - N. E. Mnev
TI  - Combinatorial PL fiber bundles and fragmentation of a~fiberwise homeomorphism
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 56
EP  - 173
VL  - 344
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/
LA  - ru
ID  - ZNSL_2007_344_a2
ER  - 
%0 Journal Article
%A N. E. Mnev
%T Combinatorial PL fiber bundles and fragmentation of a~fiberwise homeomorphism
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 56-173
%V 344
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/
%G ru
%F ZNSL_2007_344_a2
N. E. Mnev. Combinatorial PL fiber bundles and fragmentation of a~fiberwise homeomorphism. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 56-173. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/