Combinatorial PL fiber bundles and fragmentation of a fiberwise homeomorphism
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 56-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Among other things, we prove that for any compact PL-manifold $X$ there is a homotopy equivalence $BPL(X)\approx BT(X)$, where $T(X)$ is the category of abstract aggregations of triangulations of $X$. As a result, we get a functorial pure combinatorial models for PL fiber bundles. Special attention is paid to the case $X=\mathbb R^n$ and the combinatorial model of the Gauss map of a combinatorial manifold. The key trick which makes the proof possible is a collection of lemmas describing the fragmentation of a fiberwise homeomorphism.
@article{ZNSL_2007_344_a2,
     author = {N. E. Mnev},
     title = {Combinatorial {PL} fiber bundles and fragmentation of a~fiberwise homeomorphism},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--173},
     year = {2007},
     volume = {344},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/}
}
TY  - JOUR
AU  - N. E. Mnev
TI  - Combinatorial PL fiber bundles and fragmentation of a fiberwise homeomorphism
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 56
EP  - 173
VL  - 344
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/
LA  - ru
ID  - ZNSL_2007_344_a2
ER  - 
%0 Journal Article
%A N. E. Mnev
%T Combinatorial PL fiber bundles and fragmentation of a fiberwise homeomorphism
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 56-173
%V 344
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/
%G ru
%F ZNSL_2007_344_a2
N. E. Mnev. Combinatorial PL fiber bundles and fragmentation of a fiberwise homeomorphism. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 56-173. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a2/

[1] D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572 | DOI | MR | Zbl

[2] J. W. Alexander, “The combinatorial theory of complexes”, Ann. Math. (2), 31:2 (1930), 292–320 | DOI | MR | Zbl

[3] P. S. Alexandroff, “Discrete Räume”, Mat. Sb. (N.S.), 2(44):3 (1937), 501–519 | Zbl

[4] L. Anderson, N. Mnev, “Triangulations of manifolds and combinatorial bundle theory: an announcement”, Zap. Nauchn. Semin. POMI, 267, 2000, 46–52 | MR | Zbl

[5] F. G. Arenas, “Alexandroff spaces”, Acta Math. Univ. Comenian. (N.S.), 68:1 (1999), 17–25 | MR | Zbl

[6] D. K. Biss, “The homotopy type of the matroid Grassmannian”, Ann. Math. (2), 158:3 (2003), 929–952 | DOI | MR | Zbl

[7] A. Björner, “Posets, regular CW complexes and Bruhat order”, European J. Combin., 5:1 (1984), 7–16 | MR

[8] E. H. Brown, Jr., “Cohomology theories”, Ann. Math. (2), 75 (1962), 467–484 | DOI | MR | Zbl

[9] M. M. Cohen, “Simplicial structures and transverse cellularity”, Ann. Math. (2), 85 (1967), 218–245 | DOI | MR | Zbl

[10] G. P. Goerss, J. F. Jardine, Simplicial Homotopy Theory, Progress in Math., 174, Birkhäuser Verlag, Basel, 1999 | MR | Zbl

[11] A. E. Hatcher, “Higher simple homotopy theory”, Ann. Math. (2), 102:1 (1975), 101–137 | DOI | MR | Zbl

[12] A. Heller, “Homotopy resolutions of semi-simplicial complexes”, Trans. Amer. Math. Soc., 80 (1955), 299–344 | DOI | MR | Zbl

[13] J. F. P. Hudson, Piecewise Linear Topology, W. A. Benjamin, Inc., New York–Amsterdam, 1969 | MR | Zbl

[14] Dzh. Kelli, Obschaya topologiya, Nauka, M., 1968

[15] N. H. Kuiper, R. K. Lashof, “Microbundles and bundles. I: Elementary theory”, Invent. Math., 1 (1966), 1–17 | DOI | MR | Zbl

[16] N. H. Kuiper, R. K. Lashof, “Microbundles and bundles. II: Semisimplical theory”, Invent. Math., 1 (1966), 243–259 | DOI | MR | Zbl

[17] N. Levitt, Grassmannians and Gauss Maps in Piecewise-Linear Topology, Lect. Notes Math., 1366, Springer-Verlag, Berlin, 1989 | MR | Zbl

[18] A. Lundell, S. Weingram, The Topology of CW-Complexes, Van Nostrand Reinhold, New York, 1969 | MR | Zbl

[19] J. P. May, Classifying Spaces and Fibrations, Mem. Amer. Math. Soc., 155, 1975 | MR | Zbl

[20] M. C. McCord, “Singular homology groups and homotopy groups of finite topological spaces”, Duke Math. J., 33 (1966), 465–474 | DOI | MR | Zbl

[21] D. McDuff, “On the classifying spaces of discrete monoids”, Topology, 18:4 (1979), 313–320 | DOI | MR | Zbl

[22] J. Milnor, Microbundles and Differential Structures (mimeographed notes), Princeton University, 1961

[23] R. Morelli, “The birational geometry of toric varieties”, J. Algebraic Geom., 5:4 (1996), 751–782 | MR | Zbl

[24] N. E. Mnëv, G. M. Ziegler, “Combinatorial models for the finite-dimensional Grassmannians”, Discrete Comput. Geom., 10:3 (1993), 241–250 | MR | Zbl

[25] D. Quillen, “Homotopy properties of the poset of nontrivial $p$-subgroups of a group”, Adv. Math., 28:2 (1978), 101–128 | DOI | MR | Zbl

[26] C. P. Rourke, B. J. Sanderson, “$\Delta$-sets. I: Homotopy theory”, Quart. J. Math., 22 (1971), 321–338 | DOI | MR | Zbl

[27] C. P. Rourke, B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York, 1972 | MR | Zbl

[28] M. Steinberger, “The classification of PL fibrations”, Michigan Math. J., 33:1 (1986), 11–26 | DOI | MR | Zbl

[29] J. H. C. Whietehead, “Simplicial spaces, nuclei and $m$-groups”, Proc. London Math. Soc., 45 (1939), 243–327 | DOI

[30] E. C. Zeeman, Seminar on Combinatorial Topology (mimeographed notes), IHES, Paris, 1963

[31] E. C. Zeeman, “Relative simplicial approximation”, Proc. Cambridge Philos. Soc., 60 (1964), 39–43 | DOI | MR | Zbl