@article{ZNSL_2007_344_a1,
author = {M. V. Karev},
title = {Heegaard{\textendash}Floer homology of a~link with trivial component},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--55},
year = {2007},
volume = {344},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a1/}
}
M. V. Karev. Heegaard–Floer homology of a link with trivial component. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 37-55. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a1/
[1] J. A. Baldwin, W. D. Gillam, Computations of Heegaard–Floer Knot homology, arXiv: /arXiv:math/0610167
[2] P. R. Cromwell, “Embedding knots and links in an open book. I: Basic Properties”, Topology Appl., 64:1 (1995), 37–58 | DOI | MR | Zbl
[3] I. Dynnikov, “Arc presentation of links: monotonic simplification”, Fund. Math., 190 (2006), 29–67 ; arXiv: /arXiv:math.GT/0208153 | DOI | MR
[4] C. Manolescu, P. S. Ozsvàth, S. Sarkar, A combinatorial description of knot Floer homology, arXiv: /arXiv:math.GT/0607691
[5] C. Manolescu, P. S. Ozsvàth, Z. Szabò, D. P. Thurston, On combinatorial link Floer homology, arXiv: /arXiv:math.GT/0610559 | MR
[6] P. S. Ozvàth, Z. Szabò, “Holomorphic disks and topological invariants for closed 3-manifolds”, Ann. Math. (2), 159:3 (2004), 1027–1158 ; arXiv: /arXiv:math.SG/0101206 | DOI | MR
[7] P. S. Ozvàth, Z. Szabò, “Holomorphic discs and knot invariants”, Adv. Math., 186:1 (2004), 58–116 ; arXiv: /arXiv:math.GT/0209056 | DOI | MR
[8] J. A. Rasmussen, Floer homology and knot complement, Ph. D. thesis, Harvard University, 2003 ; arXiv: /arXiv:math.GT/0306378 | MR