Heegaard–Floer homology of a link with trivial component
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 37-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we prove a theorem that allows one to evaluate the Heegaard–Floer homology of a link with trivial component added through the Heegaard–Floer homology of the initial link.
@article{ZNSL_2007_344_a1,
     author = {M. V. Karev},
     title = {Heegaard{\textendash}Floer homology of a~link with trivial component},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--55},
     year = {2007},
     volume = {344},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a1/}
}
TY  - JOUR
AU  - M. V. Karev
TI  - Heegaard–Floer homology of a link with trivial component
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 37
EP  - 55
VL  - 344
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a1/
LA  - ru
ID  - ZNSL_2007_344_a1
ER  - 
%0 Journal Article
%A M. V. Karev
%T Heegaard–Floer homology of a link with trivial component
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 37-55
%V 344
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a1/
%G ru
%F ZNSL_2007_344_a1
M. V. Karev. Heegaard–Floer homology of a link with trivial component. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 37-55. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a1/

[1] J. A. Baldwin, W. D. Gillam, Computations of Heegaard–Floer Knot homology, arXiv: /arXiv:math/0610167

[2] P. R. Cromwell, “Embedding knots and links in an open book. I: Basic Properties”, Topology Appl., 64:1 (1995), 37–58 | DOI | MR | Zbl

[3] I. Dynnikov, “Arc presentation of links: monotonic simplification”, Fund. Math., 190 (2006), 29–67 ; arXiv: /arXiv:math.GT/0208153 | DOI | MR

[4] C. Manolescu, P. S. Ozsvàth, S. Sarkar, A combinatorial description of knot Floer homology, arXiv: /arXiv:math.GT/0607691

[5] C. Manolescu, P. S. Ozsvàth, Z. Szabò, D. P. Thurston, On combinatorial link Floer homology, arXiv: /arXiv:math.GT/0610559 | MR

[6] P. S. Ozvàth, Z. Szabò, “Holomorphic disks and topological invariants for closed 3-manifolds”, Ann. Math. (2), 159:3 (2004), 1027–1158 ; arXiv: /arXiv:math.SG/0101206 | DOI | MR

[7] P. S. Ozvàth, Z. Szabò, “Holomorphic discs and knot invariants”, Adv. Math., 186:1 (2004), 58–116 ; arXiv: /arXiv:math.GT/0209056 | DOI | MR

[8] J. A. Rasmussen, Floer homology and knot complement, Ph. D. thesis, Harvard University, 2003 ; arXiv: /arXiv:math.GT/0306378 | MR