@article{ZNSL_2007_344_a0,
author = {A. M. Vershik and S. V. Kerov},
title = {Four drafts on the representation theory of the group of infinite matrices over a~finite field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--36},
year = {2007},
volume = {344},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a0/}
}
TY - JOUR AU - A. M. Vershik AU - S. V. Kerov TI - Four drafts on the representation theory of the group of infinite matrices over a finite field JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 5 EP - 36 VL - 344 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a0/ LA - en ID - ZNSL_2007_344_a0 ER -
A. M. Vershik; S. V. Kerov. Four drafts on the representation theory of the group of infinite matrices over a finite field. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XV, Tome 344 (2007), pp. 5-36. http://geodesic.mathdoc.fr/item/ZNSL_2007_344_a0/
[1] J. Math. Sci., 96:5 (1999), 3455–3471 | DOI | MR | MR | Zbl
[2] J. Sov. Math., 9:3 (1978), 64–78 | MR | MR | Zbl
[3] J. A. Green, “The characters of the finite general linear groups”, Trans. Amer. Math. Soc., 80 (1955), 402–447 | DOI | MR | Zbl
[4] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis on Groups, II, Springer-Verlag, New York–Berlin, 1970 | MR | Zbl
[5] S. V. Kerov, “Generalized Hall–Littlewood symmetric functions and orthogonal polynomials”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 67–94 | MR
[6] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Translations of Mathematical Monographs, 219, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[7] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979 | MR | Zbl
[8] J. W. Milnor, J. D. Stasheff, Characteristic Classes, Princeton Univ. Press, Princeton, 1974 | MR | Zbl
[9] J. Renault, A Groupoid Approach to $C^*$-Algebras, Lect. Notes Math., 793, 1980 | MR | Zbl
[10] H. L. Skudlarek, “Die unzerlegbaren Charactere einiger diskreter Gruppen”, Math. Ann., 223 (1976), 213–231 | DOI | MR | Zbl
[11] R. P. Stanley, Enumerative Combinatorics, I, Wadsworth Brooks/Cole Advanced Books Software, Monterey, CA, 1986 | MR | Zbl
[12] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbarer unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl
[13] E. Thoma, “Die Einschränkung der Charactere von $GL(n,q)$ auf $GL(n-1,q)$”, Math. Z., 119 (1971), 321–338 | DOI | MR
[14] St. Petersburg Math. J., 6:4 (1995), 705–761 | MR | Zbl
[15] A. M. Vershik, “Two lectures on the asymptotic representation theory and statistics of Young diagrams”, Lect. Notes Math., 1815, 2003, 161–182 | MR | Zbl
[16] Sov. Math. Dokl., 23 (1981), 389–392 | MR | Zbl
[17] Sov. Math. Dokl., 26 (1982), 570–574 | MR | Zbl
[18] Funct. Anal. Appl., 15 (1982), 246–255 | DOI | MR | Zbl
[19] J. Sov. Math., 38 (1987), 1701–1733 | DOI | MR | Zbl
[20] Funct. Anal. Appl., 32:3 (1998), 147–152 | DOI | MR | Zbl
[21] A. V. Zelevinsky, Representations of Finite Classical Groups, Lect. Notes Math., 869, 1981 | MR | Zbl