Conformity theorems in multiplicative pairs
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 233-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that two conditions of orientation conformity in multiplicative pairs are equivalent and established conformity of trace homomorphism and Poincare duality.
@article{ZNSL_2007_343_a9,
     author = {A. A. Solynin},
     title = {Conformity theorems in multiplicative pairs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--247},
     year = {2007},
     volume = {343},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a9/}
}
TY  - JOUR
AU  - A. A. Solynin
TI  - Conformity theorems in multiplicative pairs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 233
EP  - 247
VL  - 343
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a9/
LA  - ru
ID  - ZNSL_2007_343_a9
ER  - 
%0 Journal Article
%A A. A. Solynin
%T Conformity theorems in multiplicative pairs
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 233-247
%V 343
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a9/
%G ru
%F ZNSL_2007_343_a9
A. A. Solynin. Conformity theorems in multiplicative pairs. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 233-247. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a9/

[1] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[2] J. Jouanolou, “Une suite exacte de Mayer-Vietoris en K-théorie algebrique”, Lect. Notes Math., 341, 1973, 293–316 | MR | Zbl

[3] A. Nenashev, Projective bundle theorem in homology theories with Chern structure, , 2003 http://www.math.uiuc.edu | MR | Zbl

[4] K. Pimenov, Traces in oriented homology theories of algebraic varieties, , 2003 http://www.math.uiuc.edu | Zbl

[5] K. Pimenov, Traces in oriented homology theories of algebraic varieties, II, , 2005 http://www.math.uiuc.edu | Zbl

[6] I. Panin, Push-forwards in oriented cohomology theories of algebraic varieties, II, Preprint POMI, No 17, 2002 | MR

[7] I. Panin,, Riemann-Roch theorem for oriented cohomology, , 2002 http://www.math.uiuc.edu

[8] I. Panin and A. Smirnov, Push-forwards in oriented cohomology theories of algebraic varieties, , 2000 http://www.math.uiuc.edu

[9] I. Panin and S. Yagunov,, Poincare duality for projective varieties, , 2002 http://www.math.uiuc.edu