$\mathcal{CS}$-indecomposable ordered semigroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 222-232

Voir la notice de l'article provenant de la source Math-Net.Ru

An ordered semigroup $S$ is called $\mathcal{CS}$-indecomposable if the set $S\times S$ is the only complete semilattice congruence on $S$. In this paper we prove that each ordered semigroup is, uniquely, complete semilattice of $\mathcal{CS}$-indecomposable semigroups, which means that it can be decomposed into $CS$-indecomposable components in a unique way. Furthermore, the $\mathcal{CS}$-indecomposable ordered semigroups are exactly the ordered semigroups which do not contain proper filters.
@article{ZNSL_2007_343_a8,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {$\mathcal{CS}$-indecomposable ordered semigroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     publisher = {mathdoc},
     volume = {343},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - M. Tsingelis
TI  - $\mathcal{CS}$-indecomposable ordered semigroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 222
EP  - 232
VL  - 343
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/
LA  - en
ID  - ZNSL_2007_343_a8
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A M. Tsingelis
%T $\mathcal{CS}$-indecomposable ordered semigroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 222-232
%V 343
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/
%G en
%F ZNSL_2007_343_a8
N. Kehayopulu; M. Tsingelis. $\mathcal{CS}$-indecomposable ordered semigroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/