$\mathcal{CS}$-indecomposable ordered semigroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 222-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An ordered semigroup $S$ is called $\mathcal{CS}$-indecomposable if the set $S\times S$ is the only complete semilattice congruence on $S$. In this paper we prove that each ordered semigroup is, uniquely, complete semilattice of $\mathcal{CS}$-indecomposable semigroups, which means that it can be decomposed into $CS$-indecomposable components in a unique way. Furthermore, the $\mathcal{CS}$-indecomposable ordered semigroups are exactly the ordered semigroups which do not contain proper filters.
@article{ZNSL_2007_343_a8,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {$\mathcal{CS}$-indecomposable ordered semigroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     year = {2007},
     volume = {343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - M. Tsingelis
TI  - $\mathcal{CS}$-indecomposable ordered semigroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 222
EP  - 232
VL  - 343
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/
LA  - en
ID  - ZNSL_2007_343_a8
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A M. Tsingelis
%T $\mathcal{CS}$-indecomposable ordered semigroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 222-232
%V 343
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/
%G en
%F ZNSL_2007_343_a8
N. Kehayopulu; M. Tsingelis. $\mathcal{CS}$-indecomposable ordered semigroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/

[1] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, I, Math. Surveys, 7, Amer. Math. Soc., Providence, Rhode Island, 1977

[2] N. Kehayopulu, “On left regular and left duo $poe$ -semigroups”, Semigroup Forum, 44 (1992), 306–313 | DOI | MR | Zbl

[3] N. Kehayopulu, M. Tsingelis, “Remark on ordered semigroups”, Razbieniya i golomorfnye otobrazheniya polugrupp, SPb. obrazovanie, 1992, 50–55 | MR

[4] 44, no. 2, 2000, 48–50 | MR | Zbl

[5] M. Putcha, “Semilattice decompositions of semigroups”, Semigroup Forum, 6 (1973), 12–34 | DOI | MR | Zbl

[6] T. Tamura, “Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup”, Proc. Japan Acad., 40 (1964), 777–780 | DOI | MR | Zbl