$\mathcal{CS}$-indecomposable ordered semigroups
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 222-232
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An ordered semigroup $S$ is called $\mathcal{CS}$-indecomposable if the set $S\times S$ is the only complete semilattice congruence on $S$. In this paper we prove that each ordered semigroup is, uniquely, complete semilattice of $\mathcal{CS}$-indecomposable semigroups, which means that it can be decomposed into $CS$-indecomposable components in a unique way. Furthermore, the $\mathcal{CS}$-indecomposable ordered semigroups are exactly the
ordered semigroups which do not contain proper filters.
			
            
            
            
          
        
      @article{ZNSL_2007_343_a8,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {$\mathcal{CS}$-indecomposable ordered semigroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--232},
     publisher = {mathdoc},
     volume = {343},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/}
}
                      
                      
                    N. Kehayopulu; M. Tsingelis. $\mathcal{CS}$-indecomposable ordered semigroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 222-232. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a8/
                  
                