Hochschild cohomology for self-injective algebras of tree class $D_n$. I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 121-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The minimal projective bimodule resolution is constructed for algebras in a family of selfinjective algebras of finite representation type and with tree class $D_n$. Using this resolution we calculate dimensions of the Hochschild cohomology groups for the algebras under consideration. The described resolution is periodic, and hence, the Hochschild cohomology of these algebras is periodic too.
@article{ZNSL_2007_343_a4,
     author = {Yu. V. Volkov and A. I. Generalov},
     title = {Hochschild cohomology for self-injective algebras of tree class~$D_n${.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--182},
     year = {2007},
     volume = {343},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a4/}
}
TY  - JOUR
AU  - Yu. V. Volkov
AU  - A. I. Generalov
TI  - Hochschild cohomology for self-injective algebras of tree class $D_n$. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 121
EP  - 182
VL  - 343
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a4/
LA  - ru
ID  - ZNSL_2007_343_a4
ER  - 
%0 Journal Article
%A Yu. V. Volkov
%A A. I. Generalov
%T Hochschild cohomology for self-injective algebras of tree class $D_n$. I
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 121-182
%V 343
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a4/
%G ru
%F ZNSL_2007_343_a4
Yu. V. Volkov; A. I. Generalov. Hochschild cohomology for self-injective algebras of tree class $D_n$. I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 121-182. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a4/

[1] C. Riedtmann, “Algebren, Darstellungsköcher, Überlagerungen und zurück”, Comment. Math. Helv., 55 (1980), 199–224 | DOI | MR | Zbl

[2] C. Riedtmann, “Representation-finite self-injective algebras of class $A_n$”, Lect. Notes Math., 832, 1980, 449–520 | MR | Zbl

[3] K. Erdmann, T. Holm, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$”, Forum Math., 11 (1999), 177–201 | DOI | MR | Zbl

[4] K. Erdmann, T. Holm, N. Snashall, “Twisted bimodules and Hochschild cohomology for self-injective algebras of class $A_n$, II”, Algebras Repr. Theory, 5 (2002), 457–482 | DOI | MR | Zbl

[5] A. I. Generalov, M. A. Kachalova, “Bimodulnaya rezolventa algebry Mebiusa”, Zap. nauchn. semin. POMI, 321, 2005, 36–66 | MR | Zbl

[6] M. A. Kachalova, “Kogomologii Khokhshilda algebry Mebiusa”, Zap. nauchn. semin. POMI, 330, 2006, 173–200 | MR | Zbl

[7] A. I. Generalov, I. O. Isametdinov, “Yoneda algebra of a class of selfinjective algebras having tree class $D_4$”, Mezhdunar. algebr. konf., posv. pamyati Z. I. Borevicha, Tez.dokl., S.-Peterburg, 2002, 95

[8] A. I. Generalov, “Algebry Ionedy polutsepnykh $QF$-algebr”, Zap. nauchn. semin. POMI, 265, 1999, 130–138 | MR

[9] A. I. Generalov, M. A. Kachalova, “Algebra Ionedy algebry Mebiusa”, Zap. nauchn. semin. POMI, 289, 2002, 90–112 | MR | Zbl

[10] D. Happel, “Hochschild cohomology of finite-dimensional algebras”, Lect. Notes Math., 1404, 1989, 108–126 | MR | Zbl

[11] M. J. Bardzell, “The alternating syzygy behavior of monomial algebras”, J. Algebra, 188 (1997), 69–89 | DOI | MR | Zbl