Triples of long root subgroups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 54-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G=G(\Phi,K)$ be a Chevalley group over a field $K$ of characteristic $\ne 2$. In the present paper, we classify subgroups of $G$ generated by triples of long root subgroups, two of which are opposite, up to conjugacy. For finite fields this result is contained in the papers by B. Cooperstein on geometry of root subgroups, whereas for $\mathrm{SL}\,(n,K)$ it is proven in a paper by L. Di Martino and the first-named author. All interesting items of our list appear in the deep geometric results on abstract root subgroups and quadratic actions by F. Timmesfeld and A. Steinbach, and also by E. Bashkirov. However, for applications to the groups of type $\mathrm{E}_l$, we need detailed justification of this list, which we could not extract from the published works. This is why in the present paper, we produce a direct elementary proof based on reduction to $\mathrm{D}_4$ where the question is settled by straightforward matrix calculations.
@article{ZNSL_2007_343_a2,
     author = {N. A. Vavilov and I. M. Pevzner},
     title = {Triples of long root subgroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--83},
     year = {2007},
     volume = {343},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - I. M. Pevzner
TI  - Triples of long root subgroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 54
EP  - 83
VL  - 343
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a2/
LA  - ru
ID  - ZNSL_2007_343_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A I. M. Pevzner
%T Triples of long root subgroups
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 54-83
%V 343
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a2/
%G ru
%F ZNSL_2007_343_a2
N. A. Vavilov; I. M. Pevzner. Triples of long root subgroups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 54-83. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a2/

[1] E. Artin, Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[2] E. L. Bashkirov, “O lineinykh gruppakh, porozhdennykh dvumya dlinnymi kornevymi podgruppami”, Sib. mat. zh., 34:2 (1993), 15–23 | MR

[3] E. L. Bashkirov, “Lineinye gruppy, soderzhaschie kornevuyu podgruppu”, Sib. mat. zh., 37:6 (1996), 1238–1255 | MR | Zbl

[4] E. L. Bashkirov, “O podgruppakh polnoi lineinoi gruppy stepeni $4$ nad telom kvaternionov, soderzhaschikh spetsialnuyu unitarnuyu gruppu indeksa $1$”, Algebra i analiz, 13:3 (2001), 18–42 | MR

[5] E. L. Bashkirov, “Gruppa $\operatorname{Spin}_8$ i nekotorye podgruppy unitarnykh grupp stepeni $4$ nad telom kvaternionov”, Algebra i analiz, 13:3 (2001), 43–64 | MR

[6] E. L. Bashkirov, Lineinye gruppy nad telami, soderzhaschie podgruppy kvadratichnykh unipotentnykh elementov, Dokt. Diss., Belorusskii Gos. Un-t Informatiki i Radioelektroniki, 2006

[7] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, M., 1973, 9–59 | MR

[8] N. A. Vavilov, “O geometrii dlinnykh kornevykh podgrupp v gruppakh Shevalle”, Vestn. LGU, ser., I, 1988, no. 1, 5–10 | MR | Zbl

[9] N. A. Vavilov, “Razlozhenie Bryua dlinnykh kornevykh elementov v gruppakh Shevalle”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, vyp. 2, L., 1988, 18–39 | MR

[10] N. A. Vavilov, “O podgruppakh rasschepimykh ortogonalnykh grupp nad koltsom”, Sib. mat. zh., 29:4 (1988), 31–43 | MR | Zbl

[11] N. A. Vavilov, “Poluprostye kornevye elementy i troiki unipotentnykh kornevykh podgrupp v gruppakh Shevalle”, Voprosy algebry, vyp. 4, Minsk, 1989, 162–173 | MR | Zbl

[12] N. A. Vavilov, “O podgruppakh rasschepimykh klassicheskikh grupp”, Tr. Mat. in-ta MIAN, 183, 1990, 29–42 | MR | Zbl

[13] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. Mat. Ob-va, 1, 1990, 64–109 | MR

[14] N. A. Vavilov, “Podgruppy rasschepimykh ortogonalnykh grupp nad kommutativnym koltsom”, Zap. nauchn. semin. POMI, 281, 2001, 35–59 | MR | Zbl

[15] N. A. Vavilov, “Geometriya 1-torov v $\mathrm{GL}_n$”, Algebra i analiz, 19:3 (2007), 119–150 | MR

[16] N. A. Vavilov, “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85 | MR

[17] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $E_6$ v $27$-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[18] N. A. Vavilov, V. V. Nesterov, “Pary mikrovesovykh torov v gruppe Shevalle tipa $E_6$”, Algebra i analiz (to appear)

[19] N. A. Vavilov, A. A. Semenov, “Razlozhenie Bryua dlinnykh kornevykh torov v gruppakh Shevalle”, Zap. nauchn. semin. LOMI, 175, 1989, 12–23 | MR | Zbl

[20] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye poluprostye elementy v gruppakh Shevalle”, Dokl. RAN, 338:6 (1994), 725–727 | MR | Zbl

[21] Zh. Dedonne, Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[22] A. E. Zalesskii, “Lineinye gruppy”, Uspekhi mat. nauk, 36:5 (1981), 57–107 | MR | Zbl

[23] A. E. Zalesskii, “Lineinye gruppy”, Algebra 4, Itogi nauki. Fundamentalnye Napravleniya, 37, M., 1989, 114–228 | MR

[24] A. E. Zalesskii, V. N. Serezhkin, “Lineinye gruppy, porozhdennye transvektsiyami”, Izv. AN SSSR, 40:1 (1976), 26–49 | MR | Zbl

[25] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR

[26] V. V. Nesterov, “Pary korotkikh kornevykh podgrupp v gruppe Shevalle”, Dokl. RAN, 357 (1997), 302–305 | MR | Zbl

[27] V. V. Nesterov, “Pary korotkikh kornevykh podgrupp v gruppe Shevalle tipa $G_2$”, Zap. nauchn. semin. POMI, 281, 2001, 253–273 | MR | Zbl

[28] V. V. Nesterov, “Pary korotkikh kornevykh podgrupp v gruppe Shevalle”, Algebra i analiz, 16:6 (2004), 172–208 | MR

[29] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. semin. POMI, 305, 2003, 195–225 | MR

[30] A. A. Semenov, Razlozhenie Bryua dlinnykh kornevykh poluprostykh torov v gruppakh Shevalle, Kand. Diss. SPb Gos. Un-t, 1991

[31] R. Steinberg, Lektsii o gruppakh Shevalle, M., 1975

[32] A. A. Suslin, V. I. Kopeiko, “Kvadratichnye moduli i ortogonalnye gruppy nad koltsami mnogochlenov”, Zap. nauchn. semin. LOMI, 71, 1977, 216–250 | MR | Zbl

[33] M. Aschbacher, G. M. Seitz, “Involutions in Chevalley groups over fields of odd order”, Nagoya Math. J., 63 (1976), 1–91 | MR | Zbl

[34] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl

[35] E. L. Bashkirov, “Some completely reducible linear groups over a division ring, containing a root subgroup”, Comm. Algebra, 31:12 (2003), 5727–5754 | DOI | MR | Zbl

[36] E. L. Bashkirov, “Irreducible linear groups of degree $3$ over a quaternion division ring, containing a root subgroup”, Comm. Algebra, 32:5 (2004), 1747–1763 | DOI | MR

[37] E. L. Bashkirov, “Irreducible linear groups of degree $4$ over a quaternion division algebra that contain a subgroup $\operatorname{diag}(T_3(K,\Phi_0),1)$”, J. Algebra, 287:2 (2005), 319–350 | DOI | MR | Zbl

[38] R. Brown, S. P. Humphries, “Orbits under symplectic transvections, I, II”, Proc. London Math. Soc., 52 (1986), 517–531 ; 532–556 | DOI | MR | Zbl

[39] P. J. Cameron, J. I. Hall, “Some groups generated by transvection subgroups”, J. Algebra, 140 (1991), 184–209 | DOI | MR | Zbl

[40] R. W. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl

[41] B. N. Cooperstein, “Subgroups of the group $E_{6}(q)$ which are generated by root subgroups”, J. Algebra, 46 (1977), 355–388 | DOI | MR | Zbl

[42] B. N. Cooperstein, “The geometry of root subgroups in exceptional groups, I, II”, Geom. Dedic., 8 (1979), 317–381 ; 15 (1983), 1–45 | DOI | MR | Zbl | DOI | MR | Zbl

[43] B. N. Cooperstein, “Geometry of long root subgroups in groups of Lie type”, Proc. Symp. Pure Math., 37 (1980), 243–248 | MR | Zbl

[44] B. N. Cooperstein, “Subgroups of exceptional groups of Lie type generated by long root elements, I, II”, J. Algebra, 70:1 (1981), 270–282 ; 283–298 | DOI | MR | Zbl | MR | Zbl

[45] H. Cuypers, The geometry of $k$-transvection groups, Preprint Eindhoven Univ. Technology, 1994 | MR | Zbl

[46] H. Cuypers, “Symplectic geometries, transvection subgroups and modules”, J. Comb. Theory, Ser. A, 65 (1994), 39–59 | DOI | MR | Zbl

[47] H. Cuypers, A. I. Steinbach, “Linear transvection groups and embedded polar spaces”, Invent. Math., 137:1 (1999), 169–198 | DOI | MR | Zbl

[48] H. Cuypers, A. I. Steinbach, “Special linear groups generated by transvections and embedded projective spaces”, J. London Math. Soc., 64:3 (2001), 576–594 | DOI | MR | Zbl

[49] L. Di Martino, N. A. Vavilov, “$(2,3)$-generation of $\mathrm{SL}(n,q)$. I: Cases $n=5,6,7$”, Comm. Algebra, 22:4 (1994), 1321–1347 ; “$(2,3)$-generation of $\mathrm{SL}(n,q)$. II: Cases $n\geq 8$”, Comm. Algebra, 24:2 (1996), 487–515 | DOI | MR | Zbl | DOI | MR | Zbl

[50] A. Hahn, O. T. O'Meara, The classical groups and $K$-theory, Springer–Verlag, NY et al., 1989 | MR

[51] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[52] W. M. Kantor, “Subgroups of classical groups generated by long root elements”, Trans. Amer. Math. Soc., 248:2 (1979), 347–379 | DOI | MR | Zbl

[53] W. M. Kantor, “Generation of linear groups”, The geometric Vein: Coxeter Festschrift, Springer, Berlin et al., 1981, 497–509 | MR

[54] Li Shang Zhi, “Irreducible subgroups of $\mathrm{SL}(n,K)$ generated by root subgroups”, Geom. Dedic., 31 (1989), 41–44 | DOI | MR | Zbl

[55] M. W. Liebeck, G. M. Seitz, “Subgroups generated by root elements in groups of Lie type”, Ann. Math., 139 (1994), 293–361 | DOI | MR | Zbl

[56] V. A. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[57] G. E. Röhrle, “On extraspecial parabolic subgroups”, Contemp. Math., 153, 1993, 143–155 | MR | Zbl

[58] A. I. Steinbach, Untergruppen von klassischen Gruppen, die von Transvektionen oder Siegel-Transvektionen erzeugt werden, Ph.-D. Thesis, Gießen, 1995, 1–187

[59] A. I. Steinbach, “Subgroups of classical groups generated by transvections or Siegel transvections, I, II”, Geom. Dedic., 68 (1997), 281–322 ; 323–357 | DOI | MR | Zbl | MR | Zbl

[60] A. I. Steinbach, “Subgroups isomorphic to $\mathrm{G}_2(L)$ in orthogonal groups”, J. Algebra, 205:1 (1998), 77–90 | DOI | MR | Zbl

[61] A. I. Steinbach, Groups of Lie type generated by long root elements in $\mathrm{F}_4(K)$, Habilitationsschrift, Gießen, 2000

[62] A. I. Steinbach, “Subgroups of the Chevalley groups of type $\mathrm{F}_4(K)$ arising from a polar space”, Adv. Geom., 3 (2003), 73–100 | DOI | MR | Zbl

[63] F. G. Timmesfeld, “Groups generated by $k$-transvections”, Invent. Math., 100 (1990), 167–206 | DOI | MR | Zbl

[64] F. G. Timmesfeld, “Groups generated by $k$-root subgroups”, Invent. Math., 106 (1991), 575–666 | DOI | MR | Zbl

[65] F. G. Timmesfeld, “Groups generated by $k$-root subgroups – a survey”, Groups, Combinatorics and Geometry (Durham, 1990), Cambridge Univ. Press, 1992, 183–204 | MR | Zbl

[66] F. G. Timmesfeld, “Moufang planes and the groups $\mathrm{E}_6^K$ and $\mathrm{SL}_2(K)$, $K$ a Cayley division algebra”, Forum Math., 6:2 (1994), 209–231 | DOI | MR | Zbl

[67] F. G. Timmesfeld, “Subgroups generated by root elements of groups generated by $k$-root subgroups”, Geom. Dedic., 49 (1994), 293–321 | DOI | MR | Zbl

[68] F. G. Timmesfeld, “Abstract root subgroups and quadratic actions”, With an appendix by A. E. Zalesskii, Adv. Math., 142:1 (1999), 1–150 | DOI | MR | Zbl

[69] F. G. Timmesfeld, Abstract root subgroups and groups of Lie type, Birkhäuser Verlag, Basel, 2001 | MR | Zbl

[70] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[71] N. A. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc. Conf. Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press, 1995, 233–280 | MR | Zbl

[72] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR

[73] A. Wagner, “Groups generated by elations”, Abh. Math. Sem. Univ. Hamburg, 41 (1974), 199–205 | DOI | MR