Euler structure and Gysin homomorphism in oriented homology theories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 248-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved the homological Self-intersection formula, Grothendieck type formula and Excess-formula for oriented homology theory. Bibliography: 8 titles.
@article{ZNSL_2007_343_a10,
     author = {A. A. Solynin},
     title = {Euler structure and {Gysin} homomorphism in oriented homology theories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {248--271},
     year = {2007},
     volume = {343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a10/}
}
TY  - JOUR
AU  - A. A. Solynin
TI  - Euler structure and Gysin homomorphism in oriented homology theories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 248
EP  - 271
VL  - 343
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a10/
LA  - en
ID  - ZNSL_2007_343_a10
ER  - 
%0 Journal Article
%A A. A. Solynin
%T Euler structure and Gysin homomorphism in oriented homology theories
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 248-271
%V 343
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a10/
%G en
%F ZNSL_2007_343_a10
A. A. Solynin. Euler structure and Gysin homomorphism in oriented homology theories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 248-271. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a10/

[1] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg-Berlin, 1977 | MR | Zbl

[2] J. Jouanolou, “Une suite exacte de Mayer–Vietoris en $K$-théorie algebrique”, Algebr. K-Theory I, Lect. Notes Math., 341, 1973, 317–335 | MR | Zbl

[3] I. Panin, Push-forwards in oriented cohomology theories of algebraic varieties, II, Preprint POMI, No 17, 2002 | MR

[4] I. Panin, Riemann-Roch theorem for oriented cohomology, , 2002 http://www.math.uiuc.edu

[5] K. Pimenov, Traces in oriented homology theories of algebraic varieties, , 2003 http://www.math.uiuc.edu | Zbl

[6] I. Panin and A. Smirnov, Push-forwards in oriented cohomology theories of algebraic varieties, , 2000 http://www.math.uiuc.edu

[7] I. Panin, S. Yagunov, Rigidity for orientable functors, MPI-preprint, 2000 | MR

[8] A. A. Solynin, “Gysin homomorphism in extraordinary cohomology theories”, Algebra and Analysis (to appear)