Subgroups of $\operatorname{SL}_n$ over a semilocal ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 33-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we prove that if $R$ is a commutative semi-local ring all of whose residue fields contain at least $3n+2$ elements, then for every subgroup $H$ of the special linear group $\operatorname{SL}(n,R)$, $n\ge 3$, containing the diagonal subgroup $\operatorname{SD}(n,R)$ there exists a unique $D$-net $\sigma$ of ideals $R$ such that $\mathrm{G}(\sigma)\le H\le N_{\mathrm{G}}(\sigma)$. In the works by Z. I. Borewicz and the author similar results were established for $\operatorname{GL}_n$ over semi-local rings and for $\operatorname{SL}_n$ over fields. Later I. Hamdan obtained similar description for a very special case of uniserial rings.
@article{ZNSL_2007_343_a1,
     author = {N. A. Vavilov},
     title = {Subgroups of $\operatorname{SL}_n$ over a semilocal ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--53},
     year = {2007},
     volume = {343},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Subgroups of $\operatorname{SL}_n$ over a semilocal ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 33
EP  - 53
VL  - 343
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/
LA  - ru
ID  - ZNSL_2007_343_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Subgroups of $\operatorname{SL}_n$ over a semilocal ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 33-53
%V 343
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/
%G ru
%F ZNSL_2007_343_a1
N. A. Vavilov. Subgroups of $\operatorname{SL}_n$ over a semilocal ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 33-53. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/

[1] Z. I. Borevich, “O parabolicheskikh podgruppakh v lineinykh gruppakh nad polulokalnym koltsom”, Vestn. LGU, ser 1, 1976, no. 13, 16–24 | Zbl

[2] Z. I. Borevich, “O parabolicheskikh podgruppakh v spetsialnoi lineinoi gruppe nad polulokalnym koltsom”, Vestn. LGU, ser 1, 1976, no. 19, 29–34 | Zbl

[3] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 64, 1976, 12–29 | Zbl

[4] Z. I. Borevich, N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Tr. Mat. in-t im. Steklova AN SSSR, 148, 1978, 43–57 | MR | Zbl

[5] Z. I. Borevich, N. A. Vavilov, “Ob opredelenii setevoi podgruppy”, Zap. nauchn. semin. LOMI, 132, 1983, 26–33 | MR | Zbl

[6] Z. I. Borevich, Kh. O. Lesama Serrano, “Gruppa obratimykh elementov polusovershennogo koltsa”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, Vyp. 1, Izd-vo LGU, L., 1986, 14–67 | MR

[7] Bui Suan Khai, “O raspolozhenii podgrupp v spetsialnoi lineinoi gruppe nad telom s beskonechnym tsentrom”, Zap. nauchn. semin. LOMI, 175, 1989, 5–11 | MR | Zbl

[8] Bui Suan Khai, “Podgruppy spetsialnoi lineinoi gruppy nad telom, soderzhaschie gruppu diagonalnykh matrits”, Zap. nauchn. semin. POMI, 211, 1994, 91–103 | MR

[9] N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschikh gruppu diagonalnykh matrits”, Vestn. LGU, 1981, no. 1, 10–15 | MR | Zbl

[10] N. A. Vavilov, “Razlozhenie Bryua dlya podgrupp, soderzhaschikh gruppu diagonalnykh matrits, I, II”, Zap. nauchn. semin. LOMI, 103, 1980, 20–30 ; 114, 1982, 50–61 | MR | Zbl | MR | Zbl

[11] N. A. Vavilov, “O podgruppakh spetsialnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits, I–V”, Vestn. LGU, ser. I, 1985, no. 4, 3–7 ; 1986, No 2, 10–15 ; 1987, No 2, 3–8 ; 1988, No 3, 10–15 ; 1993, No 2, 10–15 | MR | Zbl | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[12] N. A. Vavilov, “Razlozhenie Bryua odnomernykh preobrazovanii”, Vestn. LGU, ser. I, 1986, no. 3, 14–20 | MR | Zbl

[13] N. A. Vavilov, Podgruppy rasschepimykh klassicheskikh grupp, Dokt. Diss. Leningr. Gos. Un-t, 1987, 1–334

[14] N. A. Vavilov, “O podgruppakh rasschepimykh ortogonalnykh grupp, I, II”, Sib. mat. zhurn., 29:3 (1988), 12–25 ; Зап. научн. семин. ПОМИ, 265, 1999, 42–63 | MR | MR | Zbl

[15] N. A. Vavilov, “O podgruppakh rasschepimykh klassicheskikh grupp”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 183, 1990, 29–42 | MR | Zbl

[16] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. Mat. Ob-va, 1, 1990, 64–109 | MR

[17] N. A. Vavilov, “O podgruppakh spinornoi gruppy, soderzhaschikh rasschepimyi maksimalnyi tor, I, II”, Zap. nauchn. semin. LOMI, 191, 1991, 49–75 ; 289, 2002, 37–56 | MR | Zbl | Zbl

[18] N. A. Vavilov, “Unipotentnye elementy v podgruppakh rasshirennykh grupp Shevalle, soderzhaschikh rasschepimyi maksimalnyi tor”, Dokl. RAN, 328:5 (1993), 536–539 | MR | Zbl

[19] N. A. Vavilov, E. V. Dybkova, “Podgruppy polnoi simplekticheskoi gruppy, soderzhaschie gruppu diagonalnykh matrits, I, II”, Zap. nauchn. semin. LOMI, 103, 1980, 31–47 ; 132, 1983, 44–56 | MR | Zbl | MR

[20] N. A. Vavilov, M. Yu. Mitrofanov, “Peresecheniya dvukh kletok Bryua”, Dokl. RAN, 377:1 (2001), 7–10 | MR | Zbl

[21] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye poluprostye elementy v gruppakh Shevalle”, Dokl. RAN, 338:6 (1994), 725–727 | MR | Zbl

[22] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR | Zbl

[23] N. A. Vavilov, I. Khamdan, “O podgruppakh polnoi lineinoi gruppy nad lokalnym polem”, Izv. vuzov, Matematika, 12 (1989), 8–15 | MR | Zbl

[24] V. Golubovskii, “Podgruppy izotropnoi ortogonalnoi gruppy, soderzhaschie tsentralizator maksimalnogo tora”, Zap. nauchn. semin. POMI, 191, 1991, 76–79

[25] V. Golubovskii, Stroenie izotropnykh ortogonalnykh grupp, Kand. Diss. SPb Gos. Un-t, 1991, 1–60

[26] E. V. Dybkova, “O setevykh podgruppakh giperbolicheskikh unitarnykh grupp”, Algebra i Analiz, 9:4 (1997), 87–97 | MR | Zbl

[27] E. V. Dybkova, “Naddiagonalnye podgruppy giperbolicheskoi unitarnoi gruppy dlya khoroshego formennogo koltsa nad polem”, Zap. nauchn. semin. POMI, 236, 1997, 87–96 | MR | Zbl

[28] E. V. Dybkova, “O sopryazhennosti setevykh podgrupp v giperbolicheskoi unitarnoi gruppe nad polem”, Vestn. S.-Peterbug. Un-ta, Ser. 1, 1997, no. 1, 8–11 | MR

[29] E. V. Dybkova, “Formennye seti i reshetka naddiagonalnye podgrupp v simplekticheskoi gruppe nad polem kharakteristiki, 2”, Algebra i Analiz, 10:4 (1998), 113–129 | MR | Zbl

[30] E. V. Dybkova, “O naddiagonalnykh podgruppakh giperbolicheskoi unitarnoi gruppy nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 289, 2002, 154–206 | MR | Zbl

[31] E. V. Dybkova, “Naddiagonalnye podgruppy giperbolicheskoi unitarnoi gruppy dlya khoroshego formennogo koltsa nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 305, 2003, 121–135 | MR

[32] E. V. Dybkova, “Teorema Borevicha dlya giperbolicheskoi unitarnoi gruppy nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 321, 2005, 136–167 | MR | Zbl

[33] E. V. Dybkova, Podgruppy giperbolicheskikh unitarnykh grupp, Dokt. Diss. SPb Gos. Un-t, 2006, 182 pp.

[34] A. E. Egorov, A. A. Panin, “Teorema sopryazhennosti dlya podgrupp $\mathrm{SL}_n$, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. POMI, 272, 2000, 177–185 | MR | Zbl

[35] A. E. Zalesskii, “Lineinye gruppy”, Uspekhi mat. nauk, 36:5 (1981), 57–107 | MR | Zbl

[36] A. E. Zalesskii, “Lineinye gruppy”, Itogi nauki. Algebra. Topologiya. Geometriya, 21, VINITI, M., 1983, 135–182 | MR

[37] A. E. Zalesskii, “Lineinye gruppy”, Algebra 4, Fundamentalnye napravleniya. Itogi nauki, 37, VINITI, M., 1989, 114–228 | MR

[38] V. A. Koibaev, “Podgruppy $\mathrm{GL}(2,K)$, soderzhaschie nerasschepimyi maksimalnyi tor”, Zap. nauchn. semin. POMI, 211, 1994, 136–145 | MR | Zbl

[39] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR

[40] K. Yu. Lavrov, “Podgruppy polnoi lineinoi gruppy nad lokalnym polem”, Zap. nauchn. semin. POMI, 272, 2000, 242–258 | MR | Zbl

[41] K. Yu. Lavrov, “Podgruppy ortogonalnykh grupp chetnogo poryadka nad lokalnym polem”, Zap. nauchn. semin. POMI, 321, 2005, 240–250 | MR | Zbl

[42] M. Yu. Mitrofanov, “Rol matroidov v opisanii melkikh kletok Bryua”, Zap. nauchn. semin. POMI, 319, 2004, 244–260 | MR | Zbl

[43] A. A. Panin, “Teoriya Galua dlya odnogo klassa polnykh dedekindovykh struktur”, Zap. nauchn. semin. POMI, 236, 1997, 129–132 | Zbl

[44] A. A. Panin, A. V. Yakovlev, “Teoriya Galua dlya odnogo klassa dedekindovykh struktur”, Zap. nauchn. semin. POMI, 236, 1997, 133–148 | MR | Zbl

[45] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. semin. POMI, 305, 2003, 195–225 | MR

[46] A. Z. Simonyan, Teoriya Galua dlya modulyarnykh reshetok, Kand. Diss. SPb Gos. Un-t, 1992, 1–73

[47] E. A. Sopkina, “Klassifikatsiya gruppovykh podskhem $\mathrm{GL}_n$, soderzhaschikh rasschepimyi maksimalnyi tor”, Zap. nauchn. semin. POMI, 321, 2005, 281–296 | MR | Zbl

[48] E. A. Sopkina, Gruppovye podskhemy reduktivnykh grupp, Kand. Diss. SPb Gos. Un-t, 2006, 1–52

[49] E. A. Filippova, “O podgruppakh spinornoi gruppy, soderzhaschikh rasschepimyi maksimalnyi tor, III”, Zap. nauchn. semin. POMI, 289, 2002, 287–299 | MR | Zbl

[50] I. Khamdan, Podgruppy polnoi lineinoi gruppy nad lokalnym polem, Kand. Diss. Leningr. Gos. Un-t, 1987, 1–79

[51] I. Khamdan, “O podgruppakh spetsialnoi lineinoi gruppy nad lokalnym koltsom glavnykh idealov”, Koltsa i lineinye gruppy, Kubanskii gos. un-t, Krasnodar, 1988, 119–126 | MR

[52] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[53] Bui Xuan Hai, “On subgroups in the special linear group over a division algebra that contain a subgroup of diagonal matrices”, J. Pure Appl. Algebra, 121:1 (1997), 53–67 | DOI | MR | Zbl

[54] A. M. Cohen, H. Cuypers, H. Sterk, “Linear groups generated by reflection tori”, Canad. J. Math., 51:6 (1999), 1149–1174 | DOI | MR | Zbl

[55] D. Costa, G. Keller, “Radix redux: normal subgroups of symplectic group”, J. Reine Angew. Math., 427 (1992), 51–105 | MR | Zbl

[56] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al., 1989 | MR

[57] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[58] O. H. King, “On subgroups of the special linear group containing the special orthogonal group”, J. Algebra, 96:1 (1985), 178–193 | DOI | MR | Zbl

[59] O. H. King, “On subgroups of the special linear group containing the diagonal subgroup”, J. Algebra, 132:1 (1990), 198–204 | DOI | MR | Zbl

[60] O. H. King, “The subgroup structure of classical groups”, Contemp. Math., 131, 1992, 209–215 | MR | Zbl

[61] O. H. King, Subgroups of the special linear group, containing the groups of diagonal matrices, Preprint Univ. Newcastle, 2005

[62] Li Shang Zhi, “The maximality of monomial subgroups of linear groups over division rings”, J. Algebra, 127:1 (1989), 22–39 | DOI | MR | Zbl

[63] M. Yu. Mitrofanov, N. A. Vavilov, “Overgroups of the diagonal subgroup via small Bruhat cells”, Algebra Colloquium (to appear)

[64] V. A. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 77–108 | DOI | MR

[65] V. P. Platonov, “Subgroups of algebraic group over a local or global field containing a maximal torus”, C. R. Acad. Sci. Paris, Sér Math., 318:10 (1994), 899–903 | MR | Zbl

[66] G. M. Seitz, “Subgroups of finite groups of Lie type”, J. Algebra, 61:1 (1979), 16–27 | DOI | MR | Zbl

[67] G. M. Seitz, “On the subgroup structure of classical groups”, Commun. Algebra, 10:8 (1982), 875–885 | DOI | MR | Zbl

[68] G. M. Seitz, “Root subgroups for maximal tori in finite groups of Lie type”, Pacif. J. Math., 106:1 (1983), 153–244 | MR | Zbl

[69] E. A. Sopkina, Classification of all connected subgroup schemes of a reductive group containing a split maximal torus, POMI preprint, 2006, 1–17 | MR

[70] E. A. Sopkina, Subgroup schemes of a reductive group containing a split maximal torus, POMI preprint, 2006, 1–10 | MR

[71] N. A. Vavilov, “Subgroups of split orthogonal groups in even dimensions”, Bull. Acad. Polon. Sci., Ser. sci. Math., 29:9–10 (1981), 425–429 | MR | Zbl

[72] N. A. Vavilov, “A conjugacy theorem for subgroups of $\mathrm{GL}_n$ containing the group of diagonal matrices”, Colloq. Math., 54:1 (1987), 9–14 | MR | Zbl

[73] N. A. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc Conf. Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press, 1995, 233–280 | MR | Zbl

[74] N. A. Vavilov, “Unipotent elements in subgroups which contain a split maximal torus”, J. Algebra, 176 (1995), 356–367 | DOI | MR | Zbl

[75] N. A. Vavilov, Geometry of 1-tori in $\mathrm{GL}_n$, Preprint Univ. Bielefeld No 8, 1995, 1–21

[76] N. A. Vavilov, Subgroups of $\mathrm{SL}_n$ over a semilocal ring, Preprint Univ. Bielefeld No 111, 1998, 1–13