Subgroups of $\operatorname{SL}_n$ over a semilocal ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 33-53

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we prove that if $R$ is a commutative semi-local ring all of whose residue fields contain at least $3n+2$ elements, then for every subgroup $H$ of the special linear group $\operatorname{SL}(n,R)$, $n\ge 3$, containing the diagonal subgroup $\operatorname{SD}(n,R)$ there exists a unique $D$-net $\sigma$ of ideals $R$ such that $\mathrm{G}(\sigma)\le H\le N_{\mathrm{G}}(\sigma)$. In the works by Z. I. Borewicz and the author similar results were established for $\operatorname{GL}_n$ over semi-local rings and for $\operatorname{SL}_n$ over fields. Later I. Hamdan obtained similar description for a very special case of uniserial rings.
@article{ZNSL_2007_343_a1,
     author = {N. A. Vavilov},
     title = {Subgroups of $\operatorname{SL}_n$ over a semilocal ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {343},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Subgroups of $\operatorname{SL}_n$ over a semilocal ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 33
EP  - 53
VL  - 343
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/
LA  - ru
ID  - ZNSL_2007_343_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Subgroups of $\operatorname{SL}_n$ over a semilocal ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 33-53
%V 343
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/
%G ru
%F ZNSL_2007_343_a1
N. A. Vavilov. Subgroups of $\operatorname{SL}_n$ over a semilocal ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 15, Tome 343 (2007), pp. 33-53. http://geodesic.mathdoc.fr/item/ZNSL_2007_343_a1/