Scattering of waves by a diffraction grating with a local default of its periodic structure
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 164-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Scattering of waves by an impedance strips grating with a local defect over its surface is considered. Formulation of the problem and a basic energy correlation are discussed. Integral equations for the problem at hand is studied. The leading term of the asymptotic solution for a small defect is represented. The latter depends on integral characteristics of the defect.
@article{ZNSL_2007_342_a7,
     author = {M. A. Lyalinov},
     title = {Scattering of waves by a~diffraction grating with a~local default of its periodic structure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--186},
     year = {2007},
     volume = {342},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a7/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Scattering of waves by a diffraction grating with a local default of its periodic structure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 164
EP  - 186
VL  - 342
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a7/
LA  - ru
ID  - ZNSL_2007_342_a7
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Scattering of waves by a diffraction grating with a local default of its periodic structure
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 164-186
%V 342
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a7/
%G ru
%F ZNSL_2007_342_a7
M. A. Lyalinov. Scattering of waves by a diffraction grating with a local default of its periodic structure. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 164-186. http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a7/

[1] T. N. Galishnikova, A. S. Ilinskii, Chislennye metody v zadachakh difraktsii, Izd-vo MGU, Moskva, 1987 | MR | Zbl

[2] A. S. Ilinskii, Yu. V. Shestopalov, Primenenie metodov spektralnoi teorii v zadachakh rasprostraneniya voln, Izd-vo MGU, M., 1989

[3] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[4] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York, 1972 | MR | Zbl