Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 138-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Exact analytical solution of two variables non-stationary problem of diffraction on ideal half infinite screen is obtained by Smirnoff–Sobolev method. Source of the field is incident plane acoustic wave with $\delta$-function profile. Wave amplitude is a linear function of variable, changing along the front.
@article{ZNSL_2007_342_a5,
     author = {D. P. Kouzov and Yu. A. Solov'eva},
     title = {Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--152},
     year = {2007},
     volume = {342},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/}
}
TY  - JOUR
AU  - D. P. Kouzov
AU  - Yu. A. Solov'eva
TI  - Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 138
EP  - 152
VL  - 342
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/
LA  - ru
ID  - ZNSL_2007_342_a5
ER  - 
%0 Journal Article
%A D. P. Kouzov
%A Yu. A. Solov'eva
%T Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 138-152
%V 342
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/
%G ru
%F ZNSL_2007_342_a5
D. P. Kouzov; Yu. A. Solov'eva. Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 138-152. http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/

[1] A. P. Kiselev, “Rayleigh wave with a transverse structure”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 3059–3064 | DOI | MR | Zbl

[2] V. I. Smirnov, Kurs vysshei matematiki, t. 3, ch. 2

[3] M. M. Fridman, “Difraktsiya ploskoi uprugoi volny otnositelno polubeskonechnoi pryamolineinoi zhestko zadelannoi scheli”, Uchenye zapiski LGU. Seriya matematicheskikh nauk., 114:17 (1949), 72–94, LGU, Leningrad

[4] A. F. Filippov, “Nekotorye zadachi difraktsii ploskikh uprugikh voln”, PMM, 20:6 (1956)

[5] Yu. V. Petrov, A. A. Utkin, Asimptotika napryazhenii u vershiny treschiny v dinamicheskikh zadachakh teorii uprugosti, Uchebnoe posobie, PMASh RAN, SPbGU, 2001

[6] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, Vyp. 1, GIFML, M., 1959