Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 138-152
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact analytical solution of two variables non-stationary problem of diffraction on ideal half infinite screen is obtained by Smirnoff–Sobolev method. Source of the field is incident plane acoustic wave with $\delta$-function profile. Wave amplitude is a linear function of variable,
changing along the front.
@article{ZNSL_2007_342_a5,
author = {D. P. Kouzov and Yu. A. Solov'eva},
title = {Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--152},
publisher = {mathdoc},
volume = {342},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/}
}
TY - JOUR AU - D. P. Kouzov AU - Yu. A. Solov'eva TI - Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 138 EP - 152 VL - 342 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/ LA - ru ID - ZNSL_2007_342_a5 ER -
%0 Journal Article %A D. P. Kouzov %A Yu. A. Solov'eva %T Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front %J Zapiski Nauchnykh Seminarov POMI %D 2007 %P 138-152 %V 342 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/ %G ru %F ZNSL_2007_342_a5
D. P. Kouzov; Yu. A. Solov'eva. Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 138-152. http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/