Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 138-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact analytical solution of two variables non-stationary problem of diffraction on ideal half infinite screen is obtained by Smirnoff–Sobolev method. Source of the field is incident plane acoustic wave with $\delta$-function profile. Wave amplitude is a linear function of variable, changing along the front.
@article{ZNSL_2007_342_a5,
     author = {D. P. Kouzov and Yu. A. Solov'eva},
     title = {Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {138--152},
     publisher = {mathdoc},
     volume = {342},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/}
}
TY  - JOUR
AU  - D. P. Kouzov
AU  - Yu. A. Solov'eva
TI  - Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 138
EP  - 152
VL  - 342
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/
LA  - ru
ID  - ZNSL_2007_342_a5
ER  - 
%0 Journal Article
%A D. P. Kouzov
%A Yu. A. Solov'eva
%T Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 138-152
%V 342
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/
%G ru
%F ZNSL_2007_342_a5
D. P. Kouzov; Yu. A. Solov'eva. Diffraction on half infinite screen of plane non-stationary wave, which amplitude linearly increases along the front. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 138-152. http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a5/