@article{ZNSL_2007_342_a2,
author = {D. Gomez and S. A. Nazarov and M. E. Perez},
title = {The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--76},
year = {2007},
volume = {342},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/}
}
TY - JOUR AU - D. Gomez AU - S. A. Nazarov AU - M. E. Perez TI - The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 31 EP - 76 VL - 342 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/ LA - ru ID - ZNSL_2007_342_a2 ER -
%0 Journal Article %A D. Gomez %A S. A. Nazarov %A M. E. Perez %T The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses %J Zapiski Nauchnykh Seminarov POMI %D 2007 %P 31-76 %V 342 %U http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/ %G ru %F ZNSL_2007_342_a2
D. Gomez; S. A. Nazarov; M. E. Perez. The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 31-76. http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/
[1] S. G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR | Zbl
[2] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001
[3] E. Sanchez-Palencia, “Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses”, Trends in Applications of Pure Mathematics to Mechanics, Lect. Notes Physics, 195, Springer-Verlag, Berlin, 1984, 346–368 | MR
[4] E. Sanchez-Palencia, H. Tchatat, “Vibration de systèmes élastiques avec des masses concentrées”, Rend. Sem. Mat. Univ. Politec. Torino, 42:3 (1984), 43–63 | MR | Zbl
[5] M. Lobo, E. Pérez, “Local problems or vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331 (2003), 303–317 | DOI | Zbl
[6] S. A. Nazarov, “Ob odnoi zadache Sanches–Palensiya s kraevymi usloviyami Neimana”, Izvestiya VUZ'ov. Matem., 1989, no. 11, 60–66 | MR | Zbl
[7] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer, 27:6 (1993), 777–799 | MR | Zbl
[8] O. A. Oleinik, “Homogenization problems in elasticity. Spectra of singularly perturbed operators”, Non-Classical Continuum Mechanics, eds. R. J. Knops and A. A. Lacey, Cambridge University Press, New York, 1987, 81–95 | MR
[9] Yu. D. Golovatyi, S. A. Nazarov, O. A. Oleinik, T. S. Soboleva, “O sobstvennykh kolebaniyakh struny s prisoedinennoi massoi”, Sib. matem. zh., 29:5 (1988), 71–91 | MR | Zbl
[10] C. Leal, J. Sanchez-Hubert, “Perturbation of the eigenvalues of a membrane with a concentrated mass”, Quart. Appl. Math., XLVII:1 (1989), 93–103 | MR | Zbl
[11] J. Sanchez-Hubert, “Perturbation des valeurs propres pour des systèmes avec masse concentrée”, C. R. Acad. Sci. Paris Série II, 309 (1989), 507–510 | MR | Zbl
[12] O. A. Oleinik, J. Sanchez-Hubert, G. A. Yosifian, “On vibrations of a membrane with concentrated masses”, Bull. Sci. Math. 2 série, 115 (1991), 1–27 | MR | Zbl
[13] D. Gómez, M. Lobo, E. Pérez, “On the eigenfunctions associated with the high frequencies in systems with a concentrated mass”, J. Math. Pures Appl., 78:8 (1999), 841–865 | DOI | MR | Zbl
[14] E. Pérez, “On the whispering gallery modes on the interfaces of membranes composed of two materials with very different densities”, Math. Models Methods Appl. Sci., 13:1 (2003), 75–98 | DOI | MR | Zbl
[15] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer Verlag, Heidelberg, 1989 | MR | Zbl
[16] O. A. Oleinik, G. A. Iosifian, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl
[17] Yu. D. Golovatyi, “Spektralnye svoistva kolebatelnykh sistem s prisoedinennymi massami: effekt lokalnykh kolebanii”, Tr. Mosk. matem. o-va, 54, 1992, 29–72 | Zbl
[18] D. Gómez, M. Lobo, E. Pérez, “On the vibrations of a plate with a concentrated mass and very small thickness”, Math. Meth. Appl. Sci., 26 (2003), 27–65 | DOI | MR | Zbl
[19] E. Pérez, “Remarks on vibrating systems with many concentrated masses and vibrating systems with parts of negligible mass”, Proceedigns of Midnight Sun Narvik Conference: Multi Scale Problems and Asymptotic Analysis, Gakkuto International Series, 24, Gakkottosho, Tokyo, 2006, 311–323 | MR | Zbl
[20] V. Rybalko, “Vibrations of elastic systems with a large number of tiny heavy inclusions”, Asymptotic Analysis, 32 (2002), 27–62 | MR | Zbl
[21] G. A. Chechkin, E. Pérez, E. I. Yablokova, “Nonperiodic boundary homogenization problems and “light” concentrated masses”, Indiana Univ. Math. J., 54:2 (2005), 321–348 | DOI | MR | Zbl
[22] Yu. D. Golovatyi, “Spektralnaya zadacha Neimana dlya operatora Laplasa s singulyarno vozmuschennoi plotnostyu”, Uspekhi matem. nauk, 45:4 (1990), 147–148 | MR | Zbl
[23] J. Caínzos, E. E. Pérez, M. Vilasánchez, “Asymptotics for the eigenelements of the Neumann spectral problem with concentrated masses”, Indiana Univ. Math. J., 2007 (to appear) | MR | Zbl
[24] J. Caínzos, E. Pérez, M. Vilasánchez, “Asymptotic behavior of the solutions of a spectral Neumann problem $(1-D)$ with a concentrated mass”, Proceedigns of the XIX CEDYA, 2006 (to appear)
[25] D. Gomez, M. Lobo, S. A. Nazarov, E. Perez, “Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems”, J. Math. Pures Appl., 86 (2006), 303–317 | MR
[26] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matem. analiza, 8, izd-vo LGU, L., 1981, 72–153 | MR
[27] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, Izd-vo TGU, Tbilisi, 1981
[28] I. V. Kamotskii, S. A. Nazarov, “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Trudy Sankt-Peterburg. matem. o-va, 6, 1998, 151–212 | MR
[29] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[30] A. Pazy, “Asymptotic expansions of ordinary differential equations in Hilbert space”, Arch. Rational Mech. Anal., 24 (1967), 193–218 | DOI | MR | Zbl
[31] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[32] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR | Zbl
[33] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[34] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[35] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[36] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98 | MR
[37] M. Sh. Birman, B. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Iz-vo Leningr. un–ta, L., 1980 | MR
[38] S. A. Nazarov, B. A. Plamenevskii, “Asimptotika spektra zadachi Neimana v singulyarno vyrozhdayuscheisya tonkoi oblasti, 1”, Algebra i analiz, 2:2 (1990), 85–111 | MR | Zbl
[39] Yu. D. Golovatyi, S. A. Nazarov, O. A. Oleinik, “Asimptoticheskoe razlozhenie sobstvennykh znachenii i sobstvennykh funktsii zadach o kolebaniyakh sredy s kontsentrirovannymi vozmuscheniyami”, Trudy MIAN SSSR, 192, 1990, 42–60 | MR | Zbl