The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 31-76
Voir la notice de l'article provenant de la source Math-Net.Ru
Limiting spectral problems are derived for the problem about eigen-oscillations of a solid with small heavy (or light) inclusions. The asymptotic ansätze for eigenvalues and eigenvectors as well as the limiting problems are crucially dependent on relation between the geometrical and physical parameters and also the disposition of inclusions. It is established that for heavy inclusions the limiting problems are linked together into the resultant spectral problem which describes “far-action” in the family of the inclusions.
@article{ZNSL_2007_342_a2,
author = {D. Gomez and S. A. Nazarov and M. E. Perez},
title = {The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--76},
publisher = {mathdoc},
volume = {342},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/}
}
TY - JOUR AU - D. Gomez AU - S. A. Nazarov AU - M. E. Perez TI - The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 31 EP - 76 VL - 342 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/ LA - ru ID - ZNSL_2007_342_a2 ER -
%0 Journal Article %A D. Gomez %A S. A. Nazarov %A M. E. Perez %T The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses %J Zapiski Nauchnykh Seminarov POMI %D 2007 %P 31-76 %V 342 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/ %G ru %F ZNSL_2007_342_a2
D. Gomez; S. A. Nazarov; M. E. Perez. The formal asymptotics of eigenmodes for oscillating elastic spatial body with concentrated masses. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 36, Tome 342 (2007), pp. 31-76. http://geodesic.mathdoc.fr/item/ZNSL_2007_342_a2/