A generalization of the Chung-Erd\"os inequality for the probability of the union of events
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 147-150
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the Chung–Erdös inequality for the probability of the union of arbitrary events is proved using some lower bounds for tail probabilities. We present a lower bound for the probability of appearance of at least $m$ events from the set of events $A_1,\dots,A_n$ where $1\le m\le n$.
@article{ZNSL_2007_341_a9,
author = {V. V. Petrov},
title = {A generalization of the {Chung-Erd\"os} inequality for the probability of the union of events},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--150},
publisher = {mathdoc},
volume = {341},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a9/}
}
TY - JOUR AU - V. V. Petrov TI - A generalization of the Chung-Erd\"os inequality for the probability of the union of events JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 147 EP - 150 VL - 341 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a9/ LA - ru ID - ZNSL_2007_341_a9 ER -
V. V. Petrov. A generalization of the Chung-Erd\"os inequality for the probability of the union of events. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 147-150. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a9/