The growth rate of state vector in a generalized linear stochastic system with symmetric matrix
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 134-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The mean growth rate of state vector is evaluated for a generalized linear stochastic second-order system with symmetric matrix. The diagonal entries of the matrix are assumed to be independent and exponentially distributed with different means, whereas the nondiagonal entries are equal to zero.
@article{ZNSL_2007_341_a7,
     author = {N. K. Krivulin},
     title = {The growth rate of state vector in a~generalized linear stochastic system with symmetric matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--141},
     year = {2007},
     volume = {341},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a7/}
}
TY  - JOUR
AU  - N. K. Krivulin
TI  - The growth rate of state vector in a generalized linear stochastic system with symmetric matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 134
EP  - 141
VL  - 341
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a7/
LA  - ru
ID  - ZNSL_2007_341_a7
ER  - 
%0 Journal Article
%A N. K. Krivulin
%T The growth rate of state vector in a generalized linear stochastic system with symmetric matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 134-141
%V 341
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a7/
%G ru
%F ZNSL_2007_341_a7
N. K. Krivulin. The growth rate of state vector in a generalized linear stochastic system with symmetric matrix. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 134-141. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a7/

[1] F. Baccelli, G. Cohen, G. J. Olsder, J.-P. Quadrat, Synchronization and linearity, Wiley, Chichester, 1992 | MR | Zbl

[2] V. P. Maslov, V. N. Kolokoltsov, Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Fizmatlit, M., 1994 | MR

[3] J. F. C. Kingman, “Subadditive ergodic theory”, Ann. Probab., 1 (1973), 883–909 | DOI | MR | Zbl

[4] G. J. Olsder, J. A. C. Resing, R. E. De Vries, M. S. Keane, G. Hooghiemstra, “Discrete event systems with stochastic processing times”, IEEE Trans. Automat. Contr., 35:3 (1990), 299–302 | DOI | MR | Zbl

[5] A. Jean-Marie, “Analytical computation of Lyapunov exponents in stochastic event graphs”, Performance Evaluation of Parallel and Distributed Systems. Solution Methods, Proc. 3rd QMIPS Workshop, CWI Tracts, 106, Math. Centrum Centrum Wisk. Inform., Amsterdam, 1994, 309–341 | MR

[6] J. E. Cohen, “Subadditivity, generalized products of random matrices and operations research”, SIAM Review, 30:1 (1988), 69–86 | DOI | MR | Zbl

[7] N. K. Krivulin, “Skorost rosta vektora sostoyanii obobschennoi lineinoi dinamicheskoi sistemy so sluchainoi treugolnoi matritsei”, Vestn. S.-Peterb. un-ta. Ser. 1, 1 (2005), 33–38 | MR | Zbl