Estimation of constants for the right-hand inequalities of Marcinkiewicz and Rosenthal
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 115-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some optimal asymptotic estimates of constants for the right-hand inequalities of Marcinkiewicz and Rosenthal are derived. This estimates imply some new inequalities for the rate of increasing of sums and optimal right-hand estimates for the law of the iterated logarithm. Similar estimates are derived for self-normolized sums.
@article{ZNSL_2007_341_a5,
     author = {V. A. Egorov},
     title = {Estimation of constants for the right-hand inequalities of {Marcinkiewicz} and {Rosenthal}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--123},
     year = {2007},
     volume = {341},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a5/}
}
TY  - JOUR
AU  - V. A. Egorov
TI  - Estimation of constants for the right-hand inequalities of Marcinkiewicz and Rosenthal
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 115
EP  - 123
VL  - 341
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a5/
LA  - ru
ID  - ZNSL_2007_341_a5
ER  - 
%0 Journal Article
%A V. A. Egorov
%T Estimation of constants for the right-hand inequalities of Marcinkiewicz and Rosenthal
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 115-123
%V 341
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a5/
%G ru
%F ZNSL_2007_341_a5
V. A. Egorov. Estimation of constants for the right-hand inequalities of Marcinkiewicz and Rosenthal. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 115-123. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a5/

[1] A. N. Kolmogoroff, “Úeber die Summen durch den Zufall bestimmter unabhángiger Gróssen”, Math. Ann., 99 (1928) | DOI | MR | Zbl

[2] S. N. Bernshtein, Teoriya veroyatnostei, Gostekhizdat, M.-L., 1946

[3] W. Hoeffding, “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assos., 58:301 (1963), 13–30 | DOI | MR | Zbl

[4] G. Bennet, “Probability inequalities for the sum of independent random variables”, J. Amer. Statist. Assos., 57:297 (1962), 33–45 | DOI | Zbl

[5] D. F. Fuk, S. V. Nagaev, “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 16:4 (1971), 660–675 | MR | Zbl

[6] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[7] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR

[8] V. Egorov, “On the growth rate of moments of random sums”, PUB. IRMA, 44:IV (1997), 1–8

[9] V. A. Egorov, “Ob asimptoticheskom povedenii samonormirovannykh summ sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 41:3 (1996), 643–650 | MR | Zbl

[10] E. Gine, F. Götze, D. M. Mason, “When is the Student-Statistics asymptotically standard normal?”, Ann. Probab., 25, 1514–1531 | MR | Zbl

[11] B. Y. Jing, Q. M. Shao, Q. Wang, “Self-normolized Cramer-type large deviations for independent random values”, Ann. Probab., 31:4 (2003), 2167–2215 | DOI | MR | Zbl

[12] M. Loev, Teoriya veroyatnostei, IL, M., 1962 | MR