Asymptotic expansion in the central limit theorem for quadratic forms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 81-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the statistic of the form $$ Q_n=\sum_{j=1}^N a_{jj}(X_j^2-\mu_2)+\sum_{1\le j\ne k\le N}a_{jk}X_jX_k, $$ where $X_j$ are i.i.d. random variables with the finite sixth moment. We obtain the rate of convergence in the central limit theorem for one term Edgeworth expansion. Furthermore, applications to Toeplitz matrices, quadratic form of ARMA-processes, goodness-of-fit as well as spacing statistics are included.
@article{ZNSL_2007_341_a4,
     author = {F. G\"otze and A. N. Tikhomirov and V. A. Yurchenko},
     title = {Asymptotic expansion in the central limit theorem for quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--114},
     year = {2007},
     volume = {341},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. N. Tikhomirov
AU  - V. A. Yurchenko
TI  - Asymptotic expansion in the central limit theorem for quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 81
EP  - 114
VL  - 341
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/
LA  - en
ID  - ZNSL_2007_341_a4
ER  - 
%0 Journal Article
%A F. Götze
%A A. N. Tikhomirov
%A V. A. Yurchenko
%T Asymptotic expansion in the central limit theorem for quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 81-114
%V 341
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/
%G en
%F ZNSL_2007_341_a4
F. Götze; A. N. Tikhomirov; V. A. Yurchenko. Asymptotic expansion in the central limit theorem for quadratic forms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 81-114. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/

[1] I. B. Alberink and V. Bentkus, “Bounds for the concentration of asymptotically normal statistics”, Acta Appl. Math., 58 (1999), 11–59 | DOI | MR | Zbl

[2] I. B. Alberink and V. Bentkus, Berry–Esseen bounds for von Mises and U-statistics, Preprint 00-011, Universität Bielefeld, 2000 | MR | Zbl

[3] V. Bentkus and F. Götze, “Optimal rate of convergence in the CLT for quadratic forms”, Ann. Probab., 24 (1996), 466–490 | DOI | MR | Zbl

[4] V. Bentkus and F. Götze, “Optimal bounds in non-{G}aussian limit theorems for U-statistics”, Ann. Probab., 27 (1999), 454–521 | DOI | MR | Zbl

[5] V. Bentkus, F. Götze, and W. R. van Zwet, “An edgeworth expansion for symmetric statistics”, Annals Statistics, 25 (1997), 851–896 | DOI | MR | Zbl

[6] R. Fox and M. S. Taqqu, “Central limit theorems for quadratic forms in random variables having long-range dependence”, Probab. Th. Rel. Fields, 74 (1987), 312–340 | DOI | MR

[7] L. Giraitis and M. S. Taqqu, “Limit theorem for bivariate Appell polynomials. I: Central limit theorems”, Probab. Theory Relat. Fields, 107 (1997), 359–381 | DOI | MR | Zbl

[8] F. Götze, “Asymptotic expansion for bivariate von Mises functionals”, Z. Wahrsh. Verw. Geb., 50 (1979), 333–355 | DOI | MR

[9] F. Götze, “Expansion for von Mises functionals”, Z. Wahrsh. Verw. Geb., 65 (1984), 599–625 | DOI | MR

[10] F. Götze and A. N. Tikhomirov, “Asymptotic distribution of quadratic forms”, Annals Probab., 27:2 (1999), 1072–1098 | DOI | MR

[11] F. Götze and A. N. Tikhomirov, “Asymptotic distribution of quadratic forms and application”, J. Theor. Prob., 15:2 (2002), 439–491 | MR

[12] W. Hoeffding, “A class statistics with asymptotically normal distributions”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl

[13] P. Lancaster, Theory of Matrices, Academic Press, 1969 | MR | Zbl

[14] V. V. Petrov, Limit Theorems for Sums of Independent Random Variables, Springer, 1995

[15] R. Pike, “Spacings”, J. R. Statist. Soc. B, 27 (1965), 395–449 | MR

[16] A. N. Tikhomirov, “On the accuracy of the normal approximation of the probability of sums of weakly dependent Hilbert-space-valued random variables hitting a ball”, Theory Prob. Appl., 36 (1991), 738–751 | DOI | MR | Zbl