@article{ZNSL_2007_341_a4,
author = {F. G\"otze and A. N. Tikhomirov and V. A. Yurchenko},
title = {Asymptotic expansion in the central limit theorem for quadratic forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--114},
year = {2007},
volume = {341},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/}
}
TY - JOUR AU - F. Götze AU - A. N. Tikhomirov AU - V. A. Yurchenko TI - Asymptotic expansion in the central limit theorem for quadratic forms JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 81 EP - 114 VL - 341 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/ LA - en ID - ZNSL_2007_341_a4 ER -
F. Götze; A. N. Tikhomirov; V. A. Yurchenko. Asymptotic expansion in the central limit theorem for quadratic forms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 81-114. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a4/
[1] I. B. Alberink and V. Bentkus, “Bounds for the concentration of asymptotically normal statistics”, Acta Appl. Math., 58 (1999), 11–59 | DOI | MR | Zbl
[2] I. B. Alberink and V. Bentkus, Berry–Esseen bounds for von Mises and U-statistics, Preprint 00-011, Universität Bielefeld, 2000 | MR | Zbl
[3] V. Bentkus and F. Götze, “Optimal rate of convergence in the CLT for quadratic forms”, Ann. Probab., 24 (1996), 466–490 | DOI | MR | Zbl
[4] V. Bentkus and F. Götze, “Optimal bounds in non-{G}aussian limit theorems for U-statistics”, Ann. Probab., 27 (1999), 454–521 | DOI | MR | Zbl
[5] V. Bentkus, F. Götze, and W. R. van Zwet, “An edgeworth expansion for symmetric statistics”, Annals Statistics, 25 (1997), 851–896 | DOI | MR | Zbl
[6] R. Fox and M. S. Taqqu, “Central limit theorems for quadratic forms in random variables having long-range dependence”, Probab. Th. Rel. Fields, 74 (1987), 312–340 | DOI | MR
[7] L. Giraitis and M. S. Taqqu, “Limit theorem for bivariate Appell polynomials. I: Central limit theorems”, Probab. Theory Relat. Fields, 107 (1997), 359–381 | DOI | MR | Zbl
[8] F. Götze, “Asymptotic expansion for bivariate von Mises functionals”, Z. Wahrsh. Verw. Geb., 50 (1979), 333–355 | DOI | MR
[9] F. Götze, “Expansion for von Mises functionals”, Z. Wahrsh. Verw. Geb., 65 (1984), 599–625 | DOI | MR
[10] F. Götze and A. N. Tikhomirov, “Asymptotic distribution of quadratic forms”, Annals Probab., 27:2 (1999), 1072–1098 | DOI | MR
[11] F. Götze and A. N. Tikhomirov, “Asymptotic distribution of quadratic forms and application”, J. Theor. Prob., 15:2 (2002), 439–491 | MR
[12] W. Hoeffding, “A class statistics with asymptotically normal distributions”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl
[13] P. Lancaster, Theory of Matrices, Academic Press, 1969 | MR | Zbl
[14] V. V. Petrov, Limit Theorems for Sums of Independent Random Variables, Springer, 1995
[15] R. Pike, “Spacings”, J. R. Statist. Soc. B, 27 (1965), 395–449 | MR
[16] A. N. Tikhomirov, “On the accuracy of the normal approximation of the probability of sums of weakly dependent Hilbert-space-valued random variables hitting a ball”, Theory Prob. Appl., 36 (1991), 738–751 | DOI | MR | Zbl