Limit correlation functions at zero for fixed trace random matrix ensembles
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 68-80

Voir la notice de l'article provenant de la source Math-Net.Ru

The large-$N$ limit of the eigenvalue correlation functions is examined in a neighborhood of zero for the spectra of $N\times N-$Hermitian matrices chosen at random from the Hilbert–Schmidt sphere of appropriate radius. Dyson's famous $\sin\pi(t_1-t_2)/\pi(t_1-t_2)$-kernel asymptotics is extended to this class of random matrix ensembles.
@article{ZNSL_2007_341_a3,
     author = {F. G\"otze and M. I. Gordin and A. Levina},
     title = {Limit correlation functions at zero for fixed trace random matrix ensembles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--80},
     publisher = {mathdoc},
     volume = {341},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a3/}
}
TY  - JOUR
AU  - F. Götze
AU  - M. I. Gordin
AU  - A. Levina
TI  - Limit correlation functions at zero for fixed trace random matrix ensembles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 68
EP  - 80
VL  - 341
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a3/
LA  - ru
ID  - ZNSL_2007_341_a3
ER  - 
%0 Journal Article
%A F. Götze
%A M. I. Gordin
%A A. Levina
%T Limit correlation functions at zero for fixed trace random matrix ensembles
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 68-80
%V 341
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a3/
%G ru
%F ZNSL_2007_341_a3
F. Götze; M. I. Gordin; A. Levina. Limit correlation functions at zero for fixed trace random matrix ensembles. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 68-80. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a3/