Voir la notice du chapitre de livre
@article{ZNSL_2007_341_a2,
author = {V. V. Vysotsky},
title = {The area of exponential random walk and partial sums of uniform order statistics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--67},
year = {2007},
volume = {341},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a2/}
}
V. V. Vysotsky. The area of exponential random walk and partial sums of uniform order statistics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 48-67. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a2/
[1] V. V. Vysotskii, “Energiya i kolichestvo klasterov v stokhasticheskikh sistemakh neuprugikh prityagivayuschikhsya chastits”, Teoriya veroyatn. i ee primen., 50 (2005), 241–265 | MR
[2] S. Karlin, Osnovy teorii sluchainykh protsessov, Mir, M., 1971 | MR | Zbl
[3] C. Giraud, “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Stat. Phys., 105 (2001), 585–604 | DOI | MR | Zbl
[4] M. Lifshits and Z. Shi, “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab., 33 (2005), 53–81 | DOI | MR | Zbl
[5] Ph. A. Martin and J. Piasecki, “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Stat. Phys., 84 (1996), 837–857 | DOI | MR | Zbl