The area of exponential random walk and partial sums of uniform order statistics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 48-67
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $S_i$ be a random walk with standard exponential increments. We denote by $\sum_{i=1}^k S_i$ its $k$-step area. The random variable $\inf_{k\ge 1}\frac2{k(k+1)}\sum_{i=1}^k S_i$ plays important role in the study of so-called one-dimensional sticky particles model. We find the distribution of this variable and prove that for $0\le t\le 1$, $$ \mathbf P\,\biggl\{\inf_{k\ge 1}\frac2{k(k+1)}\sum_{i=1}^k S_i\ge t\biggr\}=\mathbf P\,\biggl\{\inf_{k\ge 1}\sum_{i=1}^k\bigl(S_i-it\bigr)\ge 0\biggr\}=\sqrt{1-t}\,e^{-t/2} $$ We also show that for $0\le t\le 1$, $$ \lim_{n\to\infty}\,\mathbf P\,\biggl\{\min_{1\le k\le n}\frac{2n}{k(k+1)}\sum_{i=1}^k U_{i,n}\ge t\biggr\}=\sqrt{1-t}\,e^{-t/2}, $$ where $U_{i, n}$ are the order statistics of $n$ i.i.d. random variables uniformly distributed on $[0,1]$.
@article{ZNSL_2007_341_a2,
     author = {V. V. Vysotsky},
     title = {The area of exponential random walk and partial sums of uniform order statistics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--67},
     year = {2007},
     volume = {341},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a2/}
}
TY  - JOUR
AU  - V. V. Vysotsky
TI  - The area of exponential random walk and partial sums of uniform order statistics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 48
EP  - 67
VL  - 341
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a2/
LA  - ru
ID  - ZNSL_2007_341_a2
ER  - 
%0 Journal Article
%A V. V. Vysotsky
%T The area of exponential random walk and partial sums of uniform order statistics
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 48-67
%V 341
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a2/
%G ru
%F ZNSL_2007_341_a2
V. V. Vysotsky. The area of exponential random walk and partial sums of uniform order statistics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 48-67. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a2/

[1] V. V. Vysotskii, “Energiya i kolichestvo klasterov v stokhasticheskikh sistemakh neuprugikh prityagivayuschikhsya chastits”, Teoriya veroyatn. i ee primen., 50 (2005), 241–265 | MR

[2] S. Karlin, Osnovy teorii sluchainykh protsessov, Mir, M., 1971 | MR | Zbl

[3] C. Giraud, “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Stat. Phys., 105 (2001), 585–604 | DOI | MR | Zbl

[4] M. Lifshits and Z. Shi, “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab., 33 (2005), 53–81 | DOI | MR | Zbl

[5] Ph. A. Martin and J. Piasecki, “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Stat. Phys., 84 (1996), 837–857 | DOI | MR | Zbl