Stochastic integral in case of infinite expectation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 197-219

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of analysis of a multi-dimensional semi-Markov process of diffusion type in case of infinite expectation of the first exit time from a small neighborhood of the initial point is worked out. A generalization of a formula of Dynkin for this case is proved. The formula of Ito for the stochastic integral by the multi-dimensional semi-Markov process of diffusion type is derived.
@article{ZNSL_2007_341_a14,
     author = {B. P. Harlamov},
     title = {Stochastic integral in case of infinite expectation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--219},
     publisher = {mathdoc},
     volume = {341},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Stochastic integral in case of infinite expectation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 197
EP  - 219
VL  - 341
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/
LA  - ru
ID  - ZNSL_2007_341_a14
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Stochastic integral in case of infinite expectation
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 197-219
%V 341
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/
%G ru
%F ZNSL_2007_341_a14
B. P. Harlamov. Stochastic integral in case of infinite expectation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 197-219. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/