Stochastic integral in case of infinite expectation
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 197-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method of analysis of a multi-dimensional semi-Markov process of diffusion type in case of infinite expectation of the first exit time from a small neighborhood of the initial point is worked out. A generalization of a formula of Dynkin for this case is proved. The formula of Ito for the stochastic integral by the multi-dimensional semi-Markov process of diffusion type is derived.
@article{ZNSL_2007_341_a14,
     author = {B. P. Harlamov},
     title = {Stochastic integral in case of infinite expectation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--219},
     year = {2007},
     volume = {341},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Stochastic integral in case of infinite expectation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 197
EP  - 219
VL  - 341
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/
LA  - ru
ID  - ZNSL_2007_341_a14
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Stochastic integral in case of infinite expectation
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 197-219
%V 341
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/
%G ru
%F ZNSL_2007_341_a14
B. P. Harlamov. Stochastic integral in case of infinite expectation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 197-219. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a14/

[1] B. P. Kharlamov, Nepreryvnye polumarkovskie protsessy, Nauka, SPb, 2001 | MR

[2] B. P. Kharlamov, “Absolyutnaya nepreryvnost mer v klasse polumarkovskikh protsessov diffuzionnogo tipa”, Zap. nauchn. semin. POMI, 294, 2002, 216–244 | MR | Zbl

[3] B. P. Kharlamov, “Kharakteristicheskii operator diffuzionnogo protsessa”, Zap. nauchn. semin. POMI, 298, 2003, 226–251 | MR | Zbl

[4] B. P. Kharlamov, “Stokhasticheskii integral po polumarkovskomu protsessu diffuzionnogo tipa”, Zap. nauchn. semin. POMI, 328, 2005, 251–276 | MR | Zbl