The measure preserving and nonsingular transformations of the jump Lévy processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 174-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\xi(t)$, $t\in[0,1]$ be a jump Lévy process. By $\mathcal P_\xi$ we denote the law of $\xi$ in the Skorokhod space $\mathbb D[0,1]$. Under some nondegeneracy condition on the Lévy measure $\Lambda$ of the process we construct a group of a $\mathcal P_\xi$-preserving transformations of the space $\mathbb D[0,1]$.
@article{ZNSL_2007_341_a12,
     author = {N. V. Smorodina},
     title = {The measure preserving and nonsingular transformations of the jump {L\'evy} processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--188},
     year = {2007},
     volume = {341},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a12/}
}
TY  - JOUR
AU  - N. V. Smorodina
TI  - The measure preserving and nonsingular transformations of the jump Lévy processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 174
EP  - 188
VL  - 341
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a12/
LA  - ru
ID  - ZNSL_2007_341_a12
ER  - 
%0 Journal Article
%A N. V. Smorodina
%T The measure preserving and nonsingular transformations of the jump Lévy processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 174-188
%V 341
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a12/
%G ru
%F ZNSL_2007_341_a12
N. V. Smorodina. The measure preserving and nonsingular transformations of the jump Lévy processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 11, Tome 341 (2007), pp. 174-188. http://geodesic.mathdoc.fr/item/ZNSL_2007_341_a12/

[1] Y. Takahashi, “Absolute continuity of Poisson random fields”, Publ. Res. Inst. Math. Sci., 26 (1990), 629–649 | DOI | MR

[2] J. Kerstan, K. Mattes, and J. Mecke, Infinite divisible point processes, Akademie-Verlag, Berlin, 1978

[3] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner, Leipzig, 1983 | MR | Zbl

[4] A. V. Skorokhod, “O differentsiruemosti mer, sootvetstvuyuschikh sluchainym protsessam, I”, Teoriya veroyatn. i ee primen., 2 (1957), 629–649

[5] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, Kiev, 1961

[6] A. V. Skorokhod, Stokhasticheskie protsessy s nezavisimymi prirascheniyami, Nauka, Moskva, 1986 | MR

[7] N. V. Smorodina, “Invariantnye i kvaziinvariantnye preobrazovaniya mer, otvechayuschikh ustoichivym protsessam s nezavisimymi prirascheniyami”, Zap. nauchn. semin. POMI, 339, 2006, 135–150 | MR | Zbl

[8] J. F. C. Kingman, Poisson Processes, Clarendon Press, Oxford, 1993 | MR | Zbl

[9] I. M. Gel'fand, M. I. Graev, A. M. Vershik, “Representations of the group of diffeomorphisms”, Russian Math. Surveys, 30 (1975), 3–50 | MR

[10] A. Vershik, N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson–Dirichlet measures”, C. R. Acad. Sci. Paris, Ser. I Math., 329 (1999), 163–168 | MR | Zbl

[11] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1977 | MR