On amorphic $C$-algebras
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 87-102

Voir la notice de l'article provenant de la source Math-Net.Ru

An amorphic association scheme has the property that any of its fusion is also an association scheme. In this paper we generalize the property to be amorphic to an arbitrary $C$-algebra, and prove that any amorphic $C$-algebra is determined up to isomorphism by the multiset of its diagonal structure constants and an additional integer equal $\pm 1$. We show that any amorphic $C$-algebra with rational structure constants is the fusion of an amorphic homogeneous $C$-algebra. As a special case of our results we obtain the well-known Ivanov's characterization of intersection numbers of amorphic association schemes.
@article{ZNSL_2006_340_a5,
     author = {I. N. Ponomarenko and A. Rahnamai Barghi},
     title = {On amorphic $C$-algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--102},
     publisher = {mathdoc},
     volume = {340},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a5/}
}
TY  - JOUR
AU  - I. N. Ponomarenko
AU  - A. Rahnamai Barghi
TI  - On amorphic $C$-algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 87
EP  - 102
VL  - 340
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a5/
LA  - ru
ID  - ZNSL_2006_340_a5
ER  - 
%0 Journal Article
%A I. N. Ponomarenko
%A A. Rahnamai Barghi
%T On amorphic $C$-algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 87-102
%V 340
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a5/
%G ru
%F ZNSL_2006_340_a5
I. N. Ponomarenko; A. Rahnamai Barghi. On amorphic $C$-algebras. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 87-102. http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a5/