Cliques in $k$-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 76-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The existance of $n+1$-cliques in $k$-connected graphs is studied. It is proved that in a $k$-connected graph $G$ such a clique exists provided $G$ satisfies the following conditions: (1) the vertices of any $n$-clique of $G$ lie in a $k$-separating set; (2) after removing certain pairs, each consisting of a vertex and an edge, the connectivity of the graph $G$ decreases by 2.
@article{ZNSL_2006_340_a4,
     author = {S. A. Obraztsova},
     title = {Cliques in $k$-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--86},
     year = {2006},
     volume = {340},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a4/}
}
TY  - JOUR
AU  - S. A. Obraztsova
TI  - Cliques in $k$-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 76
EP  - 86
VL  - 340
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a4/
LA  - ru
ID  - ZNSL_2006_340_a4
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%T Cliques in $k$-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 76-86
%V 340
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a4/
%G ru
%F ZNSL_2006_340_a4
S. A. Obraztsova. Cliques in $k$-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 76-86. http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a4/

[1] Y. Egawa, H. Enomoto and A. Saito, “Contractible edges in triangle-free graphs”, Combinatorica, 6:3 (1986), 269–274 | DOI | MR | Zbl

[2] W. Mader, “Generalizations of critical connectivity of graphs”, Discrete Mathematics, 72:1–3 (1988), 267–283 | DOI | MR | Zbl

[3] W. Mader, “On-vertex-edge-critically $n$-connected graphs”, Combinatorica, 1 (1981), 385–386 | DOI | MR | Zbl

[4] K. Menge, “Zur allgemeinen Kurventheory”, Fund. Math., 10 (1927), 96–115 | Zbl