Cliques in $k$-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 76-86
Cet article a éte moissonné depuis la source Math-Net.Ru
The existance of $n+1$-cliques in $k$-connected graphs is studied. It is proved that in a $k$-connected graph $G$ such a clique exists provided $G$ satisfies the following conditions: (1) the vertices of any $n$-clique of $G$ lie in a $k$-separating set; (2) after removing certain pairs, each consisting of a vertex and an edge, the connectivity of the graph $G$ decreases by 2.
@article{ZNSL_2006_340_a4,
author = {S. A. Obraztsova},
title = {Cliques in $k$-connected graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--86},
year = {2006},
volume = {340},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a4/}
}
S. A. Obraztsova. Cliques in $k$-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 76-86. http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a4/
[1] Y. Egawa, H. Enomoto and A. Saito, “Contractible edges in triangle-free graphs”, Combinatorica, 6:3 (1986), 269–274 | DOI | MR | Zbl
[2] W. Mader, “Generalizations of critical connectivity of graphs”, Discrete Mathematics, 72:1–3 (1988), 267–283 | DOI | MR | Zbl
[3] W. Mader, “On-vertex-edge-critically $n$-connected graphs”, Combinatorica, 1 (1981), 385–386 | DOI | MR | Zbl
[4] K. Menge, “Zur allgemeinen Kurventheory”, Fund. Math., 10 (1927), 96–115 | Zbl