Vertex cuts in a $k$-connected graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 33-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the structure of $k$-vertex cuts in a $k$-vertex-connected graph. A case of a biconnected graph is described in details as an illustration for our method.
@article{ZNSL_2006_340_a2,
     author = {D. V. Karpov},
     title = {Vertex cuts in a $k$-connected graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--60},
     year = {2006},
     volume = {340},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a2/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - Vertex cuts in a $k$-connected graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 33
EP  - 60
VL  - 340
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a2/
LA  - ru
ID  - ZNSL_2006_340_a2
ER  - 
%0 Journal Article
%A D. V. Karpov
%T Vertex cuts in a $k$-connected graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 33-60
%V 340
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a2/
%G ru
%F ZNSL_2006_340_a2
D. V. Karpov. Vertex cuts in a $k$-connected graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 33-60. http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a2/

[1] W. Hohberg, “The decomposition of graphs into $k$-connected components”, Discr. Math., 109 (1992), 133–145 | DOI | MR | Zbl

[2] D. W. Matula, “$k$-Blocks and Ultrablocks in Graphs”, J. Combin. Theory, Ser. B, 24 (1978), 1–13 | DOI | MR | Zbl

[3] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[4] W. T. Tutte, “A theory of $3$-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR

[5] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93 | MR | Zbl

[6] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR

[7] O. Ore, Teoriya grafov, Nauka, Moskva, 1968 | MR

[8] F. Kharari, Teoriya grafov, Mir, Moskva, 1973 | MR