@article{ZNSL_2006_340_a0,
author = {S. L. Berlov},
title = {Helly's property for $n$-cliques and the degree of a~graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--9},
year = {2006},
volume = {340},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a0/}
}
S. L. Berlov. Helly's property for $n$-cliques and the degree of a graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 5-9. http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a0/
[1] H.-J. Bandelt, E. Prisner, “Clique graphs and Helly graphs”, J. Combin. Theory Ser. B, 51:1 (1991), 34–45 | DOI | MR | Zbl
[2] P. Erdös and T. Gallai, “On minimal number of vertices representing the edges of a graph”, Publ. Math. Inst. Hung. Acad. Sci, 6 (1961), 89–96 | MR
[3] A. Farrugia, Clique-Helly graphs and hereditary clique-Helly graphs, a mini-survey, Algoritmic graph theory(CS 762), Project, Dept. of Combinatorics, University of Waterloo, 2002
[4] R. Hamelink, “A partial characterization of clique graphs”, J. Combin. Theory, Ser. B, 5 (1968), 192–197 | DOI | MR | Zbl
[5] F. Roberts and J. Spencer, “Characterization of clique-graphs”, J. Combin. Theory, Ser. B, 10 (1971), 102–108 | DOI | MR | Zbl
[6] U. Tatt, Teoriya grafov, Mir, M., 1988 | MR