Helly's property for $n$-cliques and the degree of a~graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 5-9

Voir la notice de l'article provenant de la source Math-Net.Ru

The following main result is proved. Let the maximal clique of a graph $G$ have $n$ vertices, and let the degree of any vertex of $G$ be less than $\lceil \frac{5}{3}n\rceil$. Consider a family of pairwise intersecting $n$-cliques. The the intersection of all cliques from that family has more than $n/3$ vertices. It is shown that the result is sharp.
@article{ZNSL_2006_340_a0,
     author = {S. L. Berlov},
     title = {Helly's property for $n$-cliques and the degree of a~graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {340},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a0/}
}
TY  - JOUR
AU  - S. L. Berlov
TI  - Helly's property for $n$-cliques and the degree of a~graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 5
EP  - 9
VL  - 340
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a0/
LA  - ru
ID  - ZNSL_2006_340_a0
ER  - 
%0 Journal Article
%A S. L. Berlov
%T Helly's property for $n$-cliques and the degree of a~graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 5-9
%V 340
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a0/
%G ru
%F ZNSL_2006_340_a0
S. L. Berlov. Helly's property for $n$-cliques and the degree of a~graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part I, Tome 340 (2006), pp. 5-9. http://geodesic.mathdoc.fr/item/ZNSL_2006_340_a0/