Minimum distance estimators
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 151-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper the estimation problem for unknown density on independent observations is considered. We use the minimum distance estimation method. It is shown, that the accuracy of estimating is connected to the rate of increase of the entropy of parametrical set.
@article{ZNSL_2006_339_a9,
     author = {V. N. Solev},
     title = {Minimum distance estimators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--162},
     year = {2006},
     volume = {339},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a9/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Minimum distance estimators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 151
EP  - 162
VL  - 339
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a9/
LA  - ru
ID  - ZNSL_2006_339_a9
ER  - 
%0 Journal Article
%A V. N. Solev
%T Minimum distance estimators
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 151-162
%V 339
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a9/
%G ru
%F ZNSL_2006_339_a9
V. N. Solev. Minimum distance estimators. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 151-162. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a9/

[1] L. V. Kantorovich, “Peremeschenie mass”, DAN SSSR, 37 (1942), 227–229

[2] L. V. Kantorovich, G. Sh. Rubinshtein, “O prostranstve totalno additivnykh funktsii”, Vestnik LGU, 13:7 (1958), 52–59 | MR | Zbl

[3] A. N. Kolmogorov, V. M. Tikhomirov, “Epsilon-entropiya i epsilon-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi Mat. Nauk, 14:2 (1959), 3–86 | MR | Zbl

[4] L. Devroye and G. Lugoshi, Combinatorial methods in density estimation, Springer-Verlag, New York, 2001 | MR

[5] P. Massart, “Some applications of concentration inequality”, Annales de la faculté des science de Toulouse, 6 serie, 9:2 (2000), 245–303 | MR | Zbl

[6] L. Birgé, “On estimating of a density using Hellinger distance and Some others strange facts”, Probab. Th. Rel. Fields, 71 (1993), 271–293 | DOI | MR

[7] P. Massart, Concentration Inequality and Model Selection, Ecole d'Eté de Probabilités de Saint-Flour XXXIII–2003, Springer, New York, 2003 | Zbl

[8] S. Artstein, V. Milman, S. J. Szarek, “Duality of metric entropy”, Ann. Math. (2), 159:3 (2004), 1313–1328 | DOI | MR | Zbl

[9] S. McDiarmid, “On the method of bounded differences”, Surveys in Combinatorics, Cambridge University Press, 1989, 148–188 | MR