The invariant and
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 135-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi(t)$, $t\in[0,1]$ be a strictly stable process with the index of stability $\alpha\in(0,2)$. By $\mathcal P_\xi$ we denote the law of $\xi$ in the Skorokhod space $\mathbb D[0,1]$.
For arbitrary strictly stable process $\xi$ we construct $\mathcal P_\xi-$quasi-invariant semigroup of transformations of $\mathbb D[0,1]$. For strictly stable processes with positive and negative jumps we construct $\mathcal P_\xi-$quasi-invariant group of transformations of $\mathbb D[0,1]$. In symmetric case this group is a group of the invariant transformations.
@article{ZNSL_2006_339_a8,
author = {N. V. Smorodina},
title = {The invariant and},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--150},
publisher = {mathdoc},
volume = {339},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a8/}
}
N. V. Smorodina. The invariant and. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 135-150. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a8/