The invariant and
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 135-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$, $t\in[0,1]$ be a strictly stable process with the index of stability $\alpha\in(0,2)$. By $\mathcal P_\xi$ we denote the law of $\xi$ in the Skorokhod space $\mathbb D[0,1]$. For arbitrary strictly stable process $\xi$ we construct $\mathcal P_\xi-$quasi-invariant semigroup of transformations of $\mathbb D[0,1]$. For strictly stable processes with positive and negative jumps we construct $\mathcal P_\xi-$quasi-invariant group of transformations of $\mathbb D[0,1]$. In symmetric case this group is a group of the invariant transformations.
@article{ZNSL_2006_339_a8,
     author = {N. V. Smorodina},
     title = {The invariant and},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--150},
     publisher = {mathdoc},
     volume = {339},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a8/}
}
TY  - JOUR
AU  - N. V. Smorodina
TI  - The invariant and
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 135
EP  - 150
VL  - 339
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a8/
LA  - ru
ID  - ZNSL_2006_339_a8
ER  - 
%0 Journal Article
%A N. V. Smorodina
%T The invariant and
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 135-150
%V 339
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a8/
%G ru
%F ZNSL_2006_339_a8
N. V. Smorodina. The invariant and. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 135-150. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a8/