Limit theorems for nonhomogeneous Ornstein–Uhlenbeck process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 111-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe a construction of a summation scheme with replacements of random variables. We obtain, as a limit, a time nonhomogeneous generalization of Ornstein–Uhlenbeck process. We describe it by a transform of Lamperti type where an arbitrary continuous monotone function is used instead of the exponential one.
@article{ZNSL_2006_339_a7,
     author = {O. V. Rusakov and A. N. Chuprunov},
     title = {Limit theorems for nonhomogeneous {Ornstein{\textendash}Uhlenbeck} process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--134},
     year = {2006},
     volume = {339},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a7/}
}
TY  - JOUR
AU  - O. V. Rusakov
AU  - A. N. Chuprunov
TI  - Limit theorems for nonhomogeneous Ornstein–Uhlenbeck process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 111
EP  - 134
VL  - 339
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a7/
LA  - ru
ID  - ZNSL_2006_339_a7
ER  - 
%0 Journal Article
%A O. V. Rusakov
%A A. N. Chuprunov
%T Limit theorems for nonhomogeneous Ornstein–Uhlenbeck process
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 111-134
%V 339
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a7/
%G ru
%F ZNSL_2006_339_a7
O. V. Rusakov; A. N. Chuprunov. Limit theorems for nonhomogeneous Ornstein–Uhlenbeck process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 111-134. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a7/

[1] I. Fazekas, A. N. Chuprunov, Convergence of random step lines to Ornstein–Uhlenbeck type processes, Technical Report of the Debrecen University No 24, 1996

[2] A. N. Chuprunov, “Functional limit theorems for sums of independent random variables with replacements”, Probabilistic Methods in Discrete Mathematics, 1997, 157–173 | MR | Zbl

[3] O. V. Rusakov, “Funktsionalnaya predelnaya teorema dlya sluchainykh velichin s silnoi ostatochnoi zavisimostyu”, Teor. ver. i prim., 40:4 (1995), 813–832 | MR | Zbl

[4] V. M. Kruglov, V. Yu. Korolev, Predelnye teoremy dlya sluchainykh summ, Izdatelstvo Moskovskogo universiteta, M., 1990 | MR | Zbl

[5] M. Loéve, Probability Theory, van Nostrand, Princeton–New Jersy–Toronto, New York–London, 1960 | MR | Zbl

[6] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[7] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[8] O. V. Rusakov, A model of market pricing with randomly distributed information and the geometric integral of the Ornstein–Uhlenbeck process, Report of the Department of Mathematics. University of Helsinki. Preprint No 184, 1998

[9] O. V. Rusakov, “Predelnoe povedenie dispersii summ sluchainykh velichin so sluchainymi zamescheniyami”, Zap. nauchn. semin. POMI, 216, 1994, 714–728

[10] A. N. Chuprunov, O. V. Rusakov, “Functional Poissonian limit theorem and its applications”, J. Math. Sci., 112:2 (2002), 4119–4125 | DOI | MR | Zbl

[11] J.-L. Prigent, O. Renault, O. Scaillet, CREST Document de travail INSEE No 9961, 1999 | Zbl

[12] O. E. Barndorff-Nielsen, N. Shephard, “Non-Gaussian Ornstein–Uhlenbeck – based models and some of their uses in financial economics”, J. Royal Statist. Soc., 63(2) (2001), 167–241 | DOI | MR | Zbl

[13] A. W. Lo, J. Wang, “Implementing option pricing models when asset returns are predictable”, J. Finance, 50:1 (1995), 87–129 | DOI

[14] O. V. Rusakov, “On mean value of profit for option holder: cases of a non-classical and the classical market models”, Asymptotic Methods in Probability and Statistics with Applications, eds. N. Balakrishnan, I. A. Ibragimov, V. B. Nevzorov, Birkhäuser, Boston, 2001, 523–534 | MR

[15] H. Föllmer, M. Schweizer, “A microeconomic approach to diffusion models for stock prices”, Math. Finance, 3:1 (1993), 1–23 | DOI | Zbl

[16] J. W. Lamperti, “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl