Lower bounds of risk at the problem of estimating of pseudo-periodic function, which is
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 102-110

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the estimating problem, as we observe on large interval $[-T,T]$ a pseudo-periodic function in white noise. We construct a lower minimax bound of the risk of all estimators.
@article{ZNSL_2006_339_a6,
     author = {S. V. Reshetov},
     title = {Lower bounds of risk at the problem of estimating of pseudo-periodic function, which is},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {339},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a6/}
}
TY  - JOUR
AU  - S. V. Reshetov
TI  - Lower bounds of risk at the problem of estimating of pseudo-periodic function, which is
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 102
EP  - 110
VL  - 339
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a6/
LA  - ru
ID  - ZNSL_2006_339_a6
ER  - 
%0 Journal Article
%A S. V. Reshetov
%T Lower bounds of risk at the problem of estimating of pseudo-periodic function, which is
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 102-110
%V 339
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a6/
%G ru
%F ZNSL_2006_339_a6
S. V. Reshetov. Lower bounds of risk at the problem of estimating of pseudo-periodic function, which is. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 102-110. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a6/