A test of exponentiality versus alternatives containing the RNBUE class derived from the Laplace empirical transform
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 63-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A scale–free test for exponentiality is proposed which is consistent within an extended set of models which includes, but is not limited to, the ‘renewal new better than used in expectation’ (RNBUE) class of life distributions. The limiting null distribution of the test statistics is derived, and the approximate local Bahadur efficiency is calculated for several families of alternatives. The finite–sample properties of the proposed procedures are investigated via simulation.
@article{ZNSL_2006_339_a4,
     author = {S. Meintanis and Ya. Yu. Nikitin and A. V. Tchirina},
     title = {A test of exponentiality versus alternatives containing the {RNBUE} class derived from the {Laplace} empirical transform},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--77},
     year = {2006},
     volume = {339},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a4/}
}
TY  - JOUR
AU  - S. Meintanis
AU  - Ya. Yu. Nikitin
AU  - A. V. Tchirina
TI  - A test of exponentiality versus alternatives containing the RNBUE class derived from the Laplace empirical transform
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 63
EP  - 77
VL  - 339
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a4/
LA  - ru
ID  - ZNSL_2006_339_a4
ER  - 
%0 Journal Article
%A S. Meintanis
%A Ya. Yu. Nikitin
%A A. V. Tchirina
%T A test of exponentiality versus alternatives containing the RNBUE class derived from the Laplace empirical transform
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 63-77
%V 339
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a4/
%G ru
%F ZNSL_2006_339_a4
S. Meintanis; Ya. Yu. Nikitin; A. V. Tchirina. A test of exponentiality versus alternatives containing the RNBUE class derived from the Laplace empirical transform. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 63-77. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a4/

[1] A. M. Abouammoh, R. Ahmad, and A. Khalique, “On a new better than used classes of life distributions”, Statist. Probab. Lett., 48 (2000), 189–194 | DOI | MR | Zbl

[2] I. A. Ahmad and A. R. Mugdadi, “Bounds of moment generating functions of some life distributions”, Statistical Papers, 46 (2005), 575–585 | DOI | MR | Zbl

[3] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes”, Ann. Math. Statist., 23 (1952), 193–212 | DOI | MR | Zbl

[4] R. R. Bahadur, “Stochastic comparison of tests”, Ann. Math. Stat., 31 (1960), 276–295 | DOI | MR | Zbl

[5] R. R. Bahadur, Some limit theorems in Statistics, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1971 | MR | Zbl

[6] R. E. Barlow and F. Proshan, Statistical Theory of Reliability and Life Testing, International Series in Decision Processes, 13, Holt, Rinehart and Winston, New York, 1981 | MR

[7] A. Cabaña and A. J. Quiroz, “Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions”, Test, 14 (2005), 417–431 | DOI | MR | Zbl

[8] J. V. Deshpande and S. G. Purohit, Life-Time Data: Statistical Models and Methods, World Scientific Publishers, Singapore, 2006 | Zbl

[9] T. W. Epps, J. Singleton, and L. B. Pulley, “A test of separate families of distributions based on the empirical moment generating function”, Biometrika, 69 (1982), 391–399 | DOI | MR | Zbl

[10] N. Henze, “A new flexible class of omnibus tests for exponentiality”, Commun. Statist. Theor. Meth., 22 (1993), 115–133 | DOI | MR | Zbl

[11] N. Henze and B. Klar, “Testing exponentiality against the $\mathcal{L}$-class of life distributions”, Math. Method. Statist., 10 (2001), 232–246 | MR | Zbl

[12] N. Henze and S. G. Meintanis, “Tests of fit for exponentiality based on the empirical Laplace transform”, Statistics, 36 (2002), 147–161 | DOI | MR | Zbl

[13] T. P. Hill, V. Perez-Abreu, “Extreme–value moment goodness–of–fit tests”, Ann. Instit. Statist. Math., 53 (2001), 543–551 | DOI | MR | Zbl

[14] B. Klar, “On a test for exponentiality against Laplace order dominance”, Statistics, 37 (2003), 505–515 | DOI | MR | Zbl

[15] H. Lilliefors, “On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown”, J. Amer. Stat. Ass., 64 (1969), 387–389 | DOI

[16] A. Luong and M. E. Thompson, “Minimum–distance methods based on quadratic distances for transforms”, Canad. J. Statist., 15 (1987), 239–251 | DOI | MR | Zbl

[17] Ya. Ya. Nikitin, Asymptotic efficiency of nonparametric tests, Cambridge University Press, 1995 | MR | Zbl

[18] Ya. Yu. Nikitin and A. V. Tchirina, “Bahadur efficiency and local optimality of a test for the exponential distribution based on the Gini statistic”, J. Ital. Stat. Soc., 5 (1996), 163–175 | DOI | MR

[19] R. H. Randles, “On the asymptotic normality of statistics with estimated parameters”, Ann. Statist., 10 (1982), 462–474 | DOI | MR | Zbl

[20] J. S. Rao and E. Taufer, “Testing exponentiality by comparing the empirical distribution function of the normalized spacings with that of the original data”, J. Nonpar. Statist., 15 (2003), 719–729 | DOI | MR | Zbl

[21] M. Shaked and J. G. Shanthikumar, Stochastic orders and their applications, Academic Press, NY, 1994 | MR | Zbl

[22] G. R. Shorack, “The best test of exponentiality against gamma alternatives”, J. Amer. Stat. Ass., 67 (1972), 213–214 | DOI | MR | Zbl

[23] J. J. Spinelli and M. A. Stephens, “Tests for exponentiality when origin and scale parameters are unknown”, Technometrics, 29 (1987), 471–476 | DOI | MR

[24] A. V. Tchirina, “Bahadur efficiency and local optimality of a test for exponentiality based on the Moran statistics”, J. Math. Sci., 127 (2005), 1812–1819 | DOI | MR