Estimates for the rate of strong approximation in the multidimensional invariance principle
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 37-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this paper is to derive simplest consequences of the author's result [17]. We obtain bounds for the rate of strong Gaussian approximation of sums of independent $\mathbf R^d$-valued random variables $\xi_j$ having finite moments of the form $\mathbf E\,H(\|\xi_j\|)$, where $H(x)$ is a monotone function growing not slower than $x^2$ and not faster than $e^{cx}$. A multidimensional version of the results of Sakhanenko [11] is obtained.
@article{ZNSL_2006_339_a2,
     author = {A. Yu. Zaitsev},
     title = {Estimates for the rate of strong approximation in the multidimensional invariance principle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--53},
     year = {2006},
     volume = {339},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a2/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Estimates for the rate of strong approximation in the multidimensional invariance principle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 37
EP  - 53
VL  - 339
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a2/
LA  - ru
ID  - ZNSL_2006_339_a2
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Estimates for the rate of strong approximation in the multidimensional invariance principle
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 37-53
%V 339
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a2/
%G ru
%F ZNSL_2006_339_a2
A. Yu. Zaitsev. Estimates for the rate of strong approximation in the multidimensional invariance principle. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 10, Tome 339 (2006), pp. 37-53. http://geodesic.mathdoc.fr/item/ZNSL_2006_339_a2/

[1] I. Berkes, W. Philipp, “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 7 (1979), 29–54 | DOI | MR | Zbl

[2] A. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 18 (1973), 217–234 | MR | Zbl

[3] M. Csörgő, P. Révész, “A new method to prove Strassen type laws of invariance principle, I, II”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 31 (1975), 255–259 ; 261–269 | DOI | MR | Zbl | Zbl

[4] M. Csörgő, P. Révész, Strong approximations in probability and statistics, Academic Press, New York, 1981 | MR | Zbl

[5] S. Csörgő, P. Hall, “The Komlós–Major–Tusnády approximations and their applications”, Austral. J. Statist., 26:2 (1984), 189–218 | DOI | MR | Zbl

[6] U. Einmahl, “Extensions of results of Komlós, Major and Tusnády to the multivariate case”, J. Multivar. Anal., 28 (1989), 20–68 | DOI | MR | Zbl

[7] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF, I, II”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 32 (1975), 111–131 ; 34 (1976), 34–58 | DOI | MR | Zbl | DOI | MR | Zbl

[8] P. Major, “On the invariance principle for sums of independent identically distributed random variables”, J. Multivar. Anal., 8 (1978), 487–517 | DOI | MR | Zbl

[9] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1 (1956), 177–238 | Zbl

[10] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Trudy inst. matem. SO AN SSSR, 3, Nauka, Novosibirsk, 1984, 4–49 | MR

[11] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR

[12] A. I. Sakhanenko, “Estimates in the Invariance Principle in terms of truncated moments”, IV International Conference Limit Theorems and Their Applications, Abstracts, Novosibirsk, 2006, 28

[13] Qi-Man Shao, “Strong approximation theorems for independent random variables and their applications”, J. Multivar. Anal., 52:1 (1995), 107–130 | DOI | MR | Zbl

[14] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievsk. un-ta, Kiev, 1961

[15] A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v mnogomernoi tsentralnoi predelnoi teoreme dlya sluchainykh velichin s konechnymi eksponentsialnymi momentami”, Teoriya veroyatn. i ee primen., 31 (1986), 246–265 | MR

[16] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 | DOI | MR | Zbl

[17] A. Yu. Zaitsev, “Multidimensional version of the results of Sakhanenko in the invariance principle for vectors with finite exponential moments, I, II, III”, Teoriya veroyatn. i ee primen., 45 (2000), 718–738 ; 46 (2001), 535–561 ; 744–769 | MR | Zbl | MR | Zbl

[18] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem”, Proceedings of the International Congress of Mathematicians, Vol. III (Bejing, 2002), Higher Education Press, Beijing, 2002, 107–116 | MR | Zbl

[19] A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem”, IV International Conference Limit Theorems and Their Applications, Abstracts, Novosibirsk, 2006, 35 | MR | Zbl