Nonexcellence of certain field extensions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 213-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Consider towers of fields $F_1\subset F_2\subset F_3$, where $F_3/F_2$ is a quadratic extension and $F_2/F_1$ is an extension, which is either quadratic, or of odd degree, or purely transcendental of degree 1. We construct numerous examples of the above types such that the extension $F_3/F_1$ is not $4$-excellent. Also we show that if $k$ is a field, $\operatorname{char}k\ne2$ and $l/k$ is an arbitrary field extension of forth degree, then there exists a field extension $F/k$ such that the forth degree extension $lF/F$ is not 4-excellent.
@article{ZNSL_2006_338_a9,
     author = {A. S. Sivatski},
     title = {Nonexcellence of certain field extensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {213--226},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a9/}
}
TY  - JOUR
AU  - A. S. Sivatski
TI  - Nonexcellence of certain field extensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 213
EP  - 226
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a9/
LA  - ru
ID  - ZNSL_2006_338_a9
ER  - 
%0 Journal Article
%A A. S. Sivatski
%T Nonexcellence of certain field extensions
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 213-226
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a9/
%G ru
%F ZNSL_2006_338_a9
A. S. Sivatski. Nonexcellence of certain field extensions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 213-226. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a9/

[1] J. Kr. Arason, “Excellence of $F(\phi )/F$ for $2$-fold Pfister forms”, Appendix II in [2], 1977

[2] R. Elman, T. Y. Lam, A. R. Wadsworth, “Amenable fields and Pfister extensions”, Queen's Papers Pure Appl. Math., 46 (1977), 445–491 | MR

[3] M. Rost, “Quadratic forms isotropic over the function field of a conic”, Math. Ann., 288 (1990), 511–513 | DOI | MR | Zbl

[4] W. Scharlau, Quadratic and Hermitian forms, Springer, Berlin et al., 1985 | MR

[5] A. S. Sivatski, “Nonexcellence of multiquadratic field extensions”, J. Algebra, 275:2 (2004), 859–866 | DOI | MR | Zbl