@article{ZNSL_2006_338_a8,
author = {I. K. Redchuk},
title = {Separating functions and their applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {202--212},
year = {2006},
volume = {338},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a8/}
}
I. K. Redchuk. Separating functions and their applications. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 202-212. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a8/
[1] L. A. Nazarova, A. V. Roiter, “Norma otnosheniya, razdelyayuschie funktsii i predstavleniya markirovannykh kolchanov”, Ukr. mat. zhurn., 54:6 (2002), 18–54 | MR
[2] L. A. Nazarova, A. V. Roiter, “Konechnopredstavimye diadicheskie mnozhestva”, Ukr. mat. zhurn., 52:6 (2000), 1363–1396 | MR | Zbl
[3] K. I. Belousov, L. A. Nazarova, A. V. Roiter, “Konechno-predstavimye triadicheskie mnozhestva”, Algebra i analiz, 9:4 (1997), 3–27 | MR | Zbl
[4] A. V. Roiter, “The norm of a relation”, Representation Theory I. Finite Dimensional Algebras, Proc. Ottawa, 1984, Lect. Notes in Math., 1177, Springer, Berlin, 1984, 269–272 | MR
[5] M. M. Kleiner, “Chastichno uporyadochennye mnozhestva konechnogo tipa”, Issledovaniya po teorii predstavlenii, Zap. nauchn. semin. LOMI, 28, 1972, 32–41 | MR | Zbl
[6] L. A. Nazarova, “Chastichno uporyadochennye mnozhestva beskonechnogo tipa”, Izv. AN SSSR, Ser. matem., 39 (1975), 963–991 | MR | Zbl
[7] L. A. Nazarova, A. V. Roiter, M. N. Smirnova, “Antimonotonnye i $P$-tochnye kvadratichnye formy i predstavleniya chastichno uporyadochennykh mnozhestv”, Algebra i analiz, 17:6 (2005), 161–183 | MR
[8] N. Burbaki, Gruppy Li i algebry Li, Glavy IV–VI, Mir, M., 1972, 331 pp. | Zbl
[9] A. Möbius A., “Theorie der symmetrischen Figuren”, Gessammelte Werke, t. II, Hirzel, Leipzig, 1886, 561–708
[10] A. V. Roiter, “Representations of marked quivers”, Publ. House Beijing Normal Univ., 2 (2001), 417–423 | MR
[11] P. Gabriel, “Unzerlegbare Darstellungen, I”, Manuscripta Math., 6 (1972), 71–103 | DOI | MR | Zbl
[12] M. A. Vlasenko, A. S. Mellit, Yu. S. Samoilenko, “Ob algebrakh, porozhdennykh lineino svyazannymi obrazuyuschimi s zadannym spektrom”, Funkts. analiz i prilozh., 39:3 (2005), 14–27 | MR | Zbl
[13] S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “O summakh proektorov”, Funkts. analiz i prilozh., 36:3 (2002), 20–35 | MR | Zbl
[14] I. K. Redchuk, “Razdelyayuschie funktsii, spektralnaya teoriya grafov i lokalno-skalyarnye predstavleniya v gilbertovykh prostranstvakh”, Ukr. Mat. Zhur., 58:1 (2006), 36–46 | MR | Zbl
[15] I. K. Redchuk, A. V. Roiter, “Singulyarnye lokalno-skalyarnye predstavleniya kolchanov v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. Mat. Zhur., 56:6 (2004), 796–809 | MR | Zbl
[16] S. A. Kruglyak, A. V. Roiter, “Lokalno-skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv”, Funkts. analiz i pril., 39:2 (2005), 13–30 | MR | Zbl
[17] V. G. Kac, “Infinite root systems, representations of graphs and invariant theory, II”, J. Algebra, 78 (1982), 141–162 | DOI | MR | Zbl
[18] S. Albeverio, V. Ostrovskyi, Yu. Samoilenko, “On functions on graphs and representations of a certain class of $*$-algebras”, J. of Algebra, in press | MR
[19] D. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, Academic Press, New York, 1979, 368 pp. | MR
[20] F. Harary, A. J. Schwenk, “Which graphs have integral spectra?”, Graphs and Combinatorics, Springer-Verlag, Berlin–Heidelberg–New York, 1974, 45–51 | MR
[21] F. C. Bussemaker, D. Cvetkovic, “There are exactly 13 connected, cubic, integral graphs”, Univ. Beograd Publ. Elektotehn. Fak., Ser. Mat. Fiz., 1976, no. 544–576, 43–48 | MR
[22] D. Cvetkovic, I. Gutman, N. Trinajstic, “Conjugated molecules having integrtal graph specrta”, Chem Phys. Letters, 29 (1974), 65–68 | DOI
[23] M. Capobianco, S. Maurer, D. McCarthy, J. Molluzzo, “A colection of open problems”, Ann. New York Acad. Sci., 1980, 582–583 | MR
[24] X. L. Li, L. G. Wang, “Integral trees – a survey”, Chinese J. Eng. Math., 17 (2000), 91–93, 96
[25] L. G. Wang, X. L. Li, “Integral trees with diameter 5, 6”, Discrete Math., 297 (2005), 128–143 | DOI | MR | Zbl
[26] M. Watanabe, A. J. Schwenk, “Integral starlike trees”, J. Austral. Math. Soc., Ser. A, 28:1 (1979), 120–128 | DOI | MR | Zbl