Orthoscalar representations of quivers in the category of Hilbert spaces
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 180-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As it is known, finitely presented quivers correspond to Dynkin graphs (Gabriel, 1972) and tame quivers – to extended Dynkin graphs (Donovan and Freislich, Nazarova, 1973). In the article “Locally scalar representations of graphs in the category of Hilberts spaces” (Func. Anal. and Apps., 2005) authors showed the way to transfere these results to Hilbert spaces, constructed Coxeter functors and proved an analogue of Gabriel theorem for locally scalar representations (up to the unitary equivalence). The category of locally scalar representations of a quiver can be considered as a subcategory in the category of all representations (over the field $\mathbb C$). In the present paper we study the connection between indecomposability of locally scalar representations in the subcategory and in the category of all representations (it is proved that for wide enough class of quivers indecomposability in the subcategory implies indecomposability in the category). For a quiver, corresponding to extended Dynkin graph $\widetilde D_4$ locally scalar representations which cannot be obtained from the simplest by Coxeter functors (regular representations) are classified.
@article{ZNSL_2006_338_a7,
     author = {S. A. Kruglyak and L. A. Nazarova and A. V. Roiter},
     title = {Orthoscalar representations of quivers in the category of {Hilbert} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--201},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/}
}
TY  - JOUR
AU  - S. A. Kruglyak
AU  - L. A. Nazarova
AU  - A. V. Roiter
TI  - Orthoscalar representations of quivers in the category of Hilbert spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 180
EP  - 201
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/
LA  - ru
ID  - ZNSL_2006_338_a7
ER  - 
%0 Journal Article
%A S. A. Kruglyak
%A L. A. Nazarova
%A A. V. Roiter
%T Orthoscalar representations of quivers in the category of Hilbert spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 180-201
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/
%G ru
%F ZNSL_2006_338_a7
S. A. Kruglyak; L. A. Nazarova; A. V. Roiter. Orthoscalar representations of quivers in the category of Hilbert spaces. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 180-201. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/

[1] A. V. Roiter, “Matrix Problems”, Proc. Intern. Congress Math. (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1978, 319–322 | MR

[2] P. Gabriel, “Unzerlegbare Darstellungen, I”, Manuscripta Math., 6 (1972), 71–103 | DOI | MR | Zbl

[3] L. A. Nazarova, “Predstavleniya kolchanov beskonechnogo tipa”, Izv. AN SSSR, Ser. Mat., 37 (1973), 752–791 | MR | Zbl

[4] S. A. Kruglyak, A. V. Roiter, “Lokalno skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv”, Funkts. analiz i pril., 39:2 (2005), 13–30 | MR | Zbl

[5] A. V. Roiter, S. A. Kruglyak, L. A. Nazarova, Matrix Problems in Hilbert Spaces, arXiv: /math.RT/0605728

[6] A. V. Roiter, “Boksy s involyutsiei”, Predstavleniya i kvadratichnye formy, vol. 155, AN USSR, Inst. mat., Kiev, 1979, 124–126 | MR

[7] I. K. Redchuk, A. V. Roiter,, “Singulyarnye lokalno-skalyarnye predstavleniya kolchanov v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. mat. zhurn., 56:6 (2004), 796–809 | MR | Zbl

[8] Yu. N. Bespalov, “Nabory ortoproektorov, svyazannykh sootnosheniyami”, Ukr. mat. zhurn., 44:3 (1992), 269–277 | MR | Zbl

[9] V. Ostrovskyi, Yu. Samoilenko, Introduction to the theory of representations of finitely presented *-algebras. I. Representations by bounded operators, Reviews in Mathematics and Mathematical Physics, 11, Harwood Academic Publishers, Amsterdam, 1999 | MR

[10] D. V. Galinskii, S. A. Kruglyak, “Predstavleniya $*$-algebr, porozhdennykh lineino svyazannymi ortoproektorami”, Vestn. Kievskogo un-ta, Ser. fiz.-mat. nauk, 1999, no. 2, 24–31, Na ukrainskom yazyke | MR

[11] D. V. Galinsky, “Representations of $*$-algebras generated by orthogonal projections satisfying a linear relation”, Methods Funct. Anal. Topology, 4:3 (1998), 27–32 | MR

[12] D. V. Galinsky, M. A. Muratov, “On representations of algebras generated by sets of three and four orthoprojections”, Spectral and evolutionary problems, Vol. 8 (Sevastopol, 1997), Tavria Publ., Simferopol, 1998, 15–22 | MR

[13] S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “O summakh proektorov”, Funk. analiz pril., 36:3 (2002), 20–35 | MR | Zbl

[14] S. Kruglyak, A. Kyrychenko, “On four orthogonal projections that satisfy the linear relation $\alpha_1P_1+\alpha_2P_2+\alpha_3P_3+\alpha_4P_4=I$, $\alpha_i>0$”, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001), Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Natsional. Akad. Nauk Ukrai"ni, Inst. Mat., Kiev, 2002, 461–465 | MR | Zbl

[15] A. Strelets, “Description of the representations of the algebras generated by four linearly related idempotents”, J. Algebra Appl., 4:6 (2005), 671–681 | DOI | MR | Zbl

[16] S. Kruglyak, S. Popovich, Yu. Samoilenko., “The spectral problem and $*$-representations of algebras associated with Dynkin graphs”, J. Algebra Appl., 4:6 (2005), 761–776 | DOI | MR

[17] S. A. Kruglyak, “Coxeter functors for a certain class of $*$-quivers and $*$-algebras”, Methods Funct. Anal. Topology, 8:4 (2002), 49–57 | MR | Zbl

[18] M. Enomoto, Y. Watatani, “Relative position of four subspaces in a Hilbert space”, Adv. Math., 201:2 (2006), 263–317 | DOI | MR | Zbl

[19] I. M. Gelfand, V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert space operators and operator algebras, Proc. Internat. Conf. (Tihany, 1970), Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 1972, 163–237 | MR

[20] S. Brenner, “Endomorphism algebras of vector spaces with distinguished sets of subspaces”, J. Algebra, 6 (1967), 100–114 | DOI | MR | Zbl

[21] L. A. Nazarova, A. V. Roiter, “Predstavleniya chastichno uporyadochennykh mnozhestv”, Zap. nauch. semin. LOMI AN SSSR, 28, 1972, 5–31 | MR | Zbl