@article{ZNSL_2006_338_a7,
author = {S. A. Kruglyak and L. A. Nazarova and A. V. Roiter},
title = {Orthoscalar representations of quivers in the category of {Hilbert} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {180--201},
year = {2006},
volume = {338},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/}
}
TY - JOUR AU - S. A. Kruglyak AU - L. A. Nazarova AU - A. V. Roiter TI - Orthoscalar representations of quivers in the category of Hilbert spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 180 EP - 201 VL - 338 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/ LA - ru ID - ZNSL_2006_338_a7 ER -
S. A. Kruglyak; L. A. Nazarova; A. V. Roiter. Orthoscalar representations of quivers in the category of Hilbert spaces. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 180-201. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a7/
[1] A. V. Roiter, “Matrix Problems”, Proc. Intern. Congress Math. (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1978, 319–322 | MR
[2] P. Gabriel, “Unzerlegbare Darstellungen, I”, Manuscripta Math., 6 (1972), 71–103 | DOI | MR | Zbl
[3] L. A. Nazarova, “Predstavleniya kolchanov beskonechnogo tipa”, Izv. AN SSSR, Ser. Mat., 37 (1973), 752–791 | MR | Zbl
[4] S. A. Kruglyak, A. V. Roiter, “Lokalno skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv”, Funkts. analiz i pril., 39:2 (2005), 13–30 | MR | Zbl
[5] A. V. Roiter, S. A. Kruglyak, L. A. Nazarova, Matrix Problems in Hilbert Spaces, arXiv: /math.RT/0605728
[6] A. V. Roiter, “Boksy s involyutsiei”, Predstavleniya i kvadratichnye formy, vol. 155, AN USSR, Inst. mat., Kiev, 1979, 124–126 | MR
[7] I. K. Redchuk, A. V. Roiter,, “Singulyarnye lokalno-skalyarnye predstavleniya kolchanov v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. mat. zhurn., 56:6 (2004), 796–809 | MR | Zbl
[8] Yu. N. Bespalov, “Nabory ortoproektorov, svyazannykh sootnosheniyami”, Ukr. mat. zhurn., 44:3 (1992), 269–277 | MR | Zbl
[9] V. Ostrovskyi, Yu. Samoilenko, Introduction to the theory of representations of finitely presented *-algebras. I. Representations by bounded operators, Reviews in Mathematics and Mathematical Physics, 11, Harwood Academic Publishers, Amsterdam, 1999 | MR
[10] D. V. Galinskii, S. A. Kruglyak, “Predstavleniya $*$-algebr, porozhdennykh lineino svyazannymi ortoproektorami”, Vestn. Kievskogo un-ta, Ser. fiz.-mat. nauk, 1999, no. 2, 24–31, Na ukrainskom yazyke | MR
[11] D. V. Galinsky, “Representations of $*$-algebras generated by orthogonal projections satisfying a linear relation”, Methods Funct. Anal. Topology, 4:3 (1998), 27–32 | MR
[12] D. V. Galinsky, M. A. Muratov, “On representations of algebras generated by sets of three and four orthoprojections”, Spectral and evolutionary problems, Vol. 8 (Sevastopol, 1997), Tavria Publ., Simferopol, 1998, 15–22 | MR
[13] S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “O summakh proektorov”, Funk. analiz pril., 36:3 (2002), 20–35 | MR | Zbl
[14] S. Kruglyak, A. Kyrychenko, “On four orthogonal projections that satisfy the linear relation $\alpha_1P_1+\alpha_2P_2+\alpha_3P_3+\alpha_4P_4=I$, $\alpha_i>0$”, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001), Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 43, Natsional. Akad. Nauk Ukrai"ni, Inst. Mat., Kiev, 2002, 461–465 | MR | Zbl
[15] A. Strelets, “Description of the representations of the algebras generated by four linearly related idempotents”, J. Algebra Appl., 4:6 (2005), 671–681 | DOI | MR | Zbl
[16] S. Kruglyak, S. Popovich, Yu. Samoilenko., “The spectral problem and $*$-representations of algebras associated with Dynkin graphs”, J. Algebra Appl., 4:6 (2005), 761–776 | DOI | MR
[17] S. A. Kruglyak, “Coxeter functors for a certain class of $*$-quivers and $*$-algebras”, Methods Funct. Anal. Topology, 8:4 (2002), 49–57 | MR | Zbl
[18] M. Enomoto, Y. Watatani, “Relative position of four subspaces in a Hilbert space”, Adv. Math., 201:2 (2006), 263–317 | DOI | MR | Zbl
[19] I. M. Gelfand, V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert space operators and operator algebras, Proc. Internat. Conf. (Tihany, 1970), Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 1972, 163–237 | MR
[20] S. Brenner, “Endomorphism algebras of vector spaces with distinguished sets of subspaces”, J. Algebra, 6 (1967), 100–114 | DOI | MR | Zbl
[21] L. A. Nazarova, A. V. Roiter, “Predstavleniya chastichno uporyadochennykh mnozhestv”, Zap. nauch. semin. LOMI AN SSSR, 28, 1972, 5–31 | MR | Zbl