Subgroups of unitriangular groups of infinite matrices
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 137-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show, that for any associative ring $R$, the subgroup $\mathrm{UT}_r(\infty,R)$ of row finite matrices in $\mathrm{UT}(\infty,R)$, the group of all infinite dimensional (indexed by $\mathbb N$) upper unitriangular matrices over $R$, is generated by strings (block-diagonal matrices with finite blocks along the main diagonal). This allows us to define a large family of subgroups of $\mathrm{UT}_r(\infty,R)$ associated to some growth functions. The smallest subgroup in this family, called the group of banded matrices, is generated by 1-banded simultaneous elementary transvections (a slight generalization of the usual notion of elementary transvections). We introduce a notion of net subgroups and characterize the normal net subgroups of $\mathrm{UT}(\infty,R)$.
@article{ZNSL_2006_338_a4,
     author = {W. Holubowski},
     title = {Subgroups of unitriangular groups of infinite matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--154},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/}
}
TY  - JOUR
AU  - W. Holubowski
TI  - Subgroups of unitriangular groups of infinite matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 137
EP  - 154
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/
LA  - ru
ID  - ZNSL_2006_338_a4
ER  - 
%0 Journal Article
%A W. Holubowski
%T Subgroups of unitriangular groups of infinite matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 137-154
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/
%G ru
%F ZNSL_2006_338_a4
W. Holubowski. Subgroups of unitriangular groups of infinite matrices. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 137-154. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/

[1] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Suschanskii, “Avtomaty, dinamicheskie sistemy i gruppy”, Trudy Mat. Instituta im. Steklova, 231, 2000, 134–214 | MR | Zbl

[2] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, 3-e izd., Nauka, Moskva, 1982 | MR | Zbl

[3] Yu. G. Leonov, “Predstavlenie rezidualno konechnykh 2-grupp beskonechnymi unitreugolnymi matritsami nad polem iz dvukh elementov”, Mat. Studiya, 22:2 (2003), 134–140 | MR

[4] A. S. Oliinik, V. I. Suschanskii, “Svobodnaya gruppa beskonechnykh unitreugolnykh matrits”, Mat. zametki, 67:3–4 (2000), 320–324 | MR

[5] P. P. Pavlov, “Silovskie $p$-podgruppy polnoi lineinoi gruppy nad prostym polem kharakteristiki $p$”, Izv. Akad. Nauk SSSR. Ser. Mat., 16 (1952), 437–458 | MR | Zbl

[6] D. K. Biss, “A presentation for the unipotent group over $\mathbb{F}_2$”, Comm. Algebra, 26:9 (1998), 2971–2975 | DOI | MR | Zbl

[7] D. K. Biss, S. Dasgupta, “A presentation for the unipotent group over rings with identity”, J. Algebra, 237:2 (2001), 691–707 | DOI | MR | Zbl

[8] R. Camina, “Some natural subgroups of the Nottingham group”, J. Algebra, 196 (1997), 101–113 | DOI | MR | Zbl

[9] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan Co., Ltd., London, 1950 | MR | Zbl

[10] J. D. Dixon, B. Mortimer, Permutation groups, Springer-Verlag, New York, 1996 | MR

[11] P. Galanopoulos, A. G. Sisakis, “Hausdorff matrices and composition operators”, Illinois J. Math., 45:3 (2001), 757–773 | MR | Zbl

[12] K. R. Goodearl, P. Menal, J. Moncasi, “Free and residually Artinian regular rings”, J. Algebra, 156:2 (1993), 407–432 | DOI | MR | Zbl

[13] F. Hausdorff, “Summationsmethoden und Momentfolgen, I”, Math. Zeitschrift, 9 (1921), 74–109 | DOI | MR | Zbl

[14] W. Hołubowski, “Subgroups of infinite triangular matrices containing diagonal matrices”, Publ. Math. Debrecen, 59:1–2 (2001), 45–50 | MR

[15] W. Hołubowski, “Most finitely generated subgroups of infinite unitriangular matrices are free”, Bull. Austral. Math. Soc., 66 (2002), 419–423 | DOI | MR

[16] W. Hołubowski, “Parabolic subgroups of Vershik-Kerov's group”, Proc. Amer. Math. Soc., 130 (2002), 2579–2582 | DOI | MR

[17] W. Hołubowski, “An inverse matrix of an upper triangular matrix can be lower triangular”, Discuss. Math. Gen. Algebra Appl., 22:2 (2002), 161–166 | MR

[18] W. Hołubowski, “A normal structure of McLain groups”, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 45 (2002), 171–177 | MR

[19] W. Hołubowski, “Free subgroups of the group of infinite unitriangular matrices”, Internat. J. Algebra Comput., 13:1 (2003), 81–86 | DOI | MR

[20] W. Hołubowski, A new measure of growth for groups and algebras, submitted

[21] W. Hołubowski, N. A. Vavilov, Infinite general linear group, in preparation

[22] V. M. Levchuk, “Chevalley groups and their unipotent subgroups”, Contemp. Math., 131, 1989, 227–242 | MR

[23] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory, Interscience, New York, 1966

[24] D. H. McLain, “A characteristically simple group”, Math. Proc. Camb. Phil. Soc., 50 (1954), 641–642 | DOI | MR | Zbl

[25] R. Steinberg, Lectures on Chevalley groups, Yale Univ. Press, Yale, 1967 | MR

[26] A. J. Weir, “Sylow $p$-subgroups of the general linear group over finite fields of characteristic $p$”, Proc. Amer. Math. Soc., 6 (1955), 454–464 | DOI | MR | Zbl