Subgroups of unitriangular groups of infinite matrices
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 137-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We show, that for any associative ring $R$, the subgroup $\mathrm{UT}_r(\infty,R)$ of row finite matrices in $\mathrm{UT}(\infty,R)$, the group of all infinite dimensional (indexed by $\mathbb N$) upper unitriangular matrices over $R$, is generated by strings (block-diagonal matrices with finite blocks along the main diagonal). This allows us to define a large family of subgroups of $\mathrm{UT}_r(\infty,R)$ associated to some growth functions. The smallest subgroup in this family, called the group of banded matrices, is generated by 1-banded simultaneous elementary transvections (a slight generalization of the usual notion of elementary transvections). We introduce a notion of net subgroups and characterize the normal net subgroups of $\mathrm{UT}(\infty,R)$.
@article{ZNSL_2006_338_a4,
     author = {W. Holubowski},
     title = {Subgroups of unitriangular groups of infinite matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--154},
     publisher = {mathdoc},
     volume = {338},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/}
}
TY  - JOUR
AU  - W. Holubowski
TI  - Subgroups of unitriangular groups of infinite matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 137
EP  - 154
VL  - 338
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/
LA  - ru
ID  - ZNSL_2006_338_a4
ER  - 
%0 Journal Article
%A W. Holubowski
%T Subgroups of unitriangular groups of infinite matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 137-154
%V 338
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/
%G ru
%F ZNSL_2006_338_a4
W. Holubowski. Subgroups of unitriangular groups of infinite matrices. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 137-154. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a4/