Orbits of subsystem stabilisers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 98-124

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be a reduced irreducible root system. We consider pairs $(S,X(S))$, where $S$ is a closed set of roots, $X(S)$ is its stabiliser in the Weyl group $W(\Phi)$. We are interested in such pairs maximal with respеct to the following order: $(S_1,X(S_1))\le (S_2,X(S_2))$ if $S_1\subseteq S_2$ and $X(S_1)\le X(S_2)$. Main theorem asserts that if $\Delta$ is a root subsystem such that $(\Delta,X(\Delta))$ is maximal with respect to the above order, then $X(\Delta)$ acts transitively both on the long and short roots in $\Phi\setminus\Delta$. This result is a broad generalisation of the transitivity of the Weyl group on roots of given length.
@article{ZNSL_2006_338_a2,
     author = {N. A. Vavilov and N. P. Kharchev},
     title = {Orbits of subsystem stabilisers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--124},
     publisher = {mathdoc},
     volume = {338},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - N. P. Kharchev
TI  - Orbits of subsystem stabilisers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 98
EP  - 124
VL  - 338
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/
LA  - ru
ID  - ZNSL_2006_338_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A N. P. Kharchev
%T Orbits of subsystem stabilisers
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 98-124
%V 338
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/
%G ru
%F ZNSL_2006_338_a2
N. A. Vavilov; N. P. Kharchev. Orbits of subsystem stabilisers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 98-124. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/