Orbits of subsystem stabilisers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 98-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Phi$ be a reduced irreducible root system. We consider pairs $(S,X(S))$, where $S$ is a closed set of roots, $X(S)$ is its stabiliser in the Weyl group $W(\Phi)$. We are interested in such pairs maximal with respеct to the following order: $(S_1,X(S_1))\le (S_2,X(S_2))$ if $S_1\subseteq S_2$ and $X(S_1)\le X(S_2)$. Main theorem asserts that if $\Delta$ is a root subsystem such that $(\Delta,X(\Delta))$ is maximal with respect to the above order, then $X(\Delta)$ acts transitively both on the long and short roots in $\Phi\setminus\Delta$. This result is a broad generalisation of the transitivity of the Weyl group on roots of given length.
@article{ZNSL_2006_338_a2,
     author = {N. A. Vavilov and N. P. Kharchev},
     title = {Orbits of subsystem stabilisers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--124},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - N. P. Kharchev
TI  - Orbits of subsystem stabilisers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 98
EP  - 124
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/
LA  - ru
ID  - ZNSL_2006_338_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A N. P. Kharchev
%T Orbits of subsystem stabilisers
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 98-124
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/
%G ru
%F ZNSL_2006_338_a2
N. A. Vavilov; N. P. Kharchev. Orbits of subsystem stabilisers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 98-124. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/

[1] A. Borel, Zh. Tits, “Unipotentnye elementy i parabolicheskie podgruppy reduktivnykh grupp, I”, Matematika. Period sb. perev. in. statei, 12 (1971), 97–104 | MR

[2] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, M., 1972 | Zbl

[3] N. A. Vavilov, “Maksimalnye podgruppy grupp Shevalle, soderzhaschie maksimalnyi rasschepimyi tor”, Koltsa i moduli. Predelnye teoremy teorii veroyatnostei, Vyp. 1, L., 1986, 67–75 | MR | Zbl

[4] N. A. Vavilov, “Vesovye elementy grupp Shevalle”, Dokl. AN SSSR, 298:3 (1988), 524–527 | MR | Zbl

[5] N. A. Vavilov, “Teoremy sopryazhennosti dlya podgrupp rasshirennykh grupp Shevalle, soderzhaschikh rasschepimyi maksimalnyi tor”, Dokl. AN SSSR, 299:2 (1988), 269–272 | MR | Zbl

[6] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. Mat. Ob-va, 1, 1990, 64–109 | MR

[7] N. A. Vavilov, “Unipotentnye elementy v podgruppakh rasshirennykh grupp Shevalle, soderzhaschikh rasschepimyi maksimalnyi tor”, Dokl. RAN, 328:5 (1993), 536–539 | MR | Zbl

[8] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm{E}_6$ v $27$-mernom predstavlenii”, Zap. nauchn. sem. POMI, 338, 2006, 5–68 | MR | Zbl

[9] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye poluprostye elementy v gruppakh Shevalle”, Dokl. RAN, 338:6 (1994), 725–727 | MR | Zbl

[10] E. B. Vinberg, A. G. Elashvili, “Klassifikatsiya trivektorov v devyatimernom prostranstve”, Trudy Seminara po Vekt. i Tenz. Analizu, 18, 1978, 197–233 | MR | Zbl

[11] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Mat. sb., 30:2 (1952), 349–362 | MR

[12] R. Karter, “Klassy sopryazhennykh elementov v gruppe Veilya”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 288–306 | MR

[13] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972, 292 | MR

[14] A. Borel, J. de Siebenthal, “Les sous-groupes fermés connexes de rang maximal des groupes de Lie clos”, Comm. Math. Helv., 23:2 (1949), 200–221 | DOI | MR | Zbl

[15] R. W. Carter, “Conjugacy classes in the Weyl group”, Compositio Math., 25:1 (1972), 1–59 | MR | Zbl

[16] D. I. Deriziotis, “Centralizers of semi-simple elements in a Chevalley group”, Comm. Algebra, 9:19 (1981), 1997–2014 | DOI | MR | Zbl

[17] A. J. Idowu, A. O. Morris, “Some combinatorial results for Weyl groups”, Math. Proc. Cambridge Phil. Soc., 101:3 (1987), 405–420 | DOI | MR | Zbl

[18] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[19] R. B. Howlett, “Normalizers of parabolic subgroups of reflection groups”, J. London Math. Soc., 21:1 (1980), 62–80 | DOI | MR | Zbl

[20] M. Golubitsky, B. Rothschild, “Primitive subalgebras of exceptional Lie algebras”, Pacific J. Math., 39:2 (1971), 371–393 | MR

[21] N. A. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc Conf. Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press, 1995, 233–280 | MR | Zbl

[22] N. A. Vavilov, “Do it yourself structure theorems for Lie algebras of type $\mathrm{E}_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[23] N. Wallach, “On maximal subsystems of root systems”, Canad. J. Math., 20:3 (1968), 555–574 | DOI | MR | Zbl