Orbits of subsystem stabilisers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 98-124
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Phi$ be a reduced irreducible root system. We consider pairs $(S,X(S))$, where $S$ is a closed set of roots, $X(S)$ is its stabiliser in the Weyl group $W(\Phi)$. We are interested in such pairs maximal with respеct to the following order: $(S_1,X(S_1))\le (S_2,X(S_2))$ if
$S_1\subseteq S_2$ and $X(S_1)\le X(S_2)$. Main theorem asserts that if $\Delta$ is a root subsystem such that $(\Delta,X(\Delta))$ is maximal with respect to the above order, then $X(\Delta)$ acts transitively both on the long and short roots in $\Phi\setminus\Delta$. This result is a broad generalisation of the transitivity of the Weyl group on roots of given length.
@article{ZNSL_2006_338_a2,
author = {N. A. Vavilov and N. P. Kharchev},
title = {Orbits of subsystem stabilisers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--124},
publisher = {mathdoc},
volume = {338},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/}
}
N. A. Vavilov; N. P. Kharchev. Orbits of subsystem stabilisers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 98-124. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a2/