Polyvector representations of $\operatorname{GL}_n$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 69-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we characterise $\bigwedge^n(\operatorname{GL}(n,R))$ over any commutative ring $R$ as the connected component of the stabiliser of Plücker ideal. This folk theorem is classically known for algebraically closed fields and should be also well-known in general. However, we are not aware of any obvious reference, so we produce a detailed proof which follows a general scheme developed by W. C. Waterhouse. The present paper is a technical preliminary for a subsequent paper, where we construct decomposition of transvections in polyvector representations of $\operatorname{GL}_n$.
@article{ZNSL_2006_338_a1,
     author = {N. A. Vavilov and E. Ya. Perelman},
     title = {Polyvector representations of $\operatorname{GL}_n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--97},
     publisher = {mathdoc},
     volume = {338},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - E. Ya. Perelman
TI  - Polyvector representations of $\operatorname{GL}_n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 69
EP  - 97
VL  - 338
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a1/
LA  - ru
ID  - ZNSL_2006_338_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A E. Ya. Perelman
%T Polyvector representations of $\operatorname{GL}_n$
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 69-97
%V 338
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a1/
%G ru
%F ZNSL_2006_338_a1
N. A. Vavilov; E. Ya. Perelman. Polyvector representations of $\operatorname{GL}_n$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 69-97. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a1/