Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 5-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper is devoted to a detailed computer study of the action of Chevalley group $G(\mathrm E_6,R)$ on the minimal module $V(\varpi_1)$. Our main objectives are an explicit choice and tabulation of the signs of structure constants for this action, compatible with the choice of positive Chevalley base, construction of multilinear invariants and equations on the matrix entries of matrices from $G(\mathrm E_6,R)$ in this representation, and explicit tabulation of root elements.
@article{ZNSL_2006_338_a0,
     author = {N. A. Vavilov and A. Yu. Luzgarev and I. M. Pevzner},
     title = {Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--68},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - A. Yu. Luzgarev
AU  - I. M. Pevzner
TI  - Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 5
EP  - 68
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/
LA  - ru
ID  - ZNSL_2006_338_a0
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A A. Yu. Luzgarev
%A I. M. Pevzner
%T Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 5-68
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/
%G ru
%F ZNSL_2006_338_a0
N. A. Vavilov; A. Yu. Luzgarev; I. M. Pevzner. Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 5-68. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/

[1] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] A. Borel, “Svoistva i lineinye predstavleniya Shevalle”, Seminar po algebraicheskim gruppam, M., 1973, 9–59 | MR

[3] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, M., 1972 | Zbl

[4] N. Burbaki, Gruppy i algebry Li, Glavy VII, VIII, M., 1978 | MR

[5] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. Mat. Ob-va, 1, 1990, 64–109 | MR

[6] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i Analiz, 19:4 (2007), 34–68 | MR

[7] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[8] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle”, dokazatelstvo iz knigi, Zap. nauchn. sem. POMI, 330, 2006, 36–76 | MR | Zbl

[9] N. A. Vavilov, S. I. Nikolenko, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm{F}_4$”, Algebra i analiz, 20:4 (2008), 27–63 | MR

[10] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR

[11] N. A. Vavilov, V. G. Khalin, Mathematica 5. 1. Pervoe znakomstvo, dlya nematematika, OTsEiM, SPb, 2005

[12] N. A. Vavilov, V. G. Khalin, Mathematica 5. 2. Osnovy sintaksisa, dlya nematematika, OTsEiM, SPb, 2005

[13] V. G. Kazakevich, A. K. Stavrova, “Podgruppy, normalizuemye kommutantom podgruppy Levi”, Zap. nauchn. sem. POMI, 319, 2004, 199–215 | MR | Zbl

[14] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR

[15] A. Yu. Luzgarev, “O nadgruppakh $\mathrm{E}(\mathrm{E}_6,R)$ i $\mathrm{E}(\mathrm{E}_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. sem. POMI, 319, 2004, 216–243 | MR | Zbl

[16] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[17] E. B. Plotkin, “Syur'ektivnaya stabilizatsiya $\mathrm{K}_1$-funktora dlya nekotorykh isklyuchitelnykh grupp Shevalle”, Zap. nauchn. sem. POMI, 198, 1991, 65–88 | MR | Zbl

[18] M. Rid, Algebraicheskaya geometriya dlya vsekh, Mir, M., 1989 | MR

[19] N. S. Semenov, “Odin argument v polzu gurvitsevosti $G_{\mathrm{sc}}(\mathrm{E}_6,q)$”, Zap. nauchn. sem. POMI, 305, 2003, 228–237 | MR

[20] T. A. Springer, “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Ser. sovr. probl. mat. Fundam. napravl., 55, VINITI, 1989, 5–136 | MR

[21] R. Steinberg, Lektsii o gruppakh Shevalle, M., 1975

[22] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[23] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[24] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[25] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[26] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Commun. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl

[27] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR

[28] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Algebraic $K$-theory and algebraic number theory, Proc. Semin., Contemp. Math., 83, 1989, 1–17 | MR | Zbl

[29] E. Abe, J. Hurley, “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl

[30] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[31] M. Aschbacher, “The 27-dimensional module for $\mathrm{E}_6$, I–IV”, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc., 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 131:1 (1990), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[32] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedic., 25:1–3 (1988), 417–465 | MR | Zbl

[33] M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, 1990, 75–84 | MR

[34] H. Azad, “Structure constants of algebraic groups”, J. Algebra, 75:1 (1982), 209–222 | DOI | MR | Zbl

[35] H. Azad, “The Jacobi identity”, Punjab Univ. J. Math., 16 (1983), 9–29 | MR | Zbl

[36] H. Azad, M. Barry, G. M. Seitz, “On the structure of parabolic subgroups”, Comm. Algebra, 18:2 (1990), 551–562 | DOI | MR | Zbl

[37] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205 | DOI | MR | Zbl

[38] J. Baez, “Review of J. H. Conway, D. A. Smith, On quaternions and octonions: their geometry, arithmetic and symmetry”, Bull. Amer. Math. Soc., 42:2 (2005), 229–243 | DOI | MR

[39] R. Bix, “Octonion planes over local rings”, Trans. Amer. Math. Soc., 261:1 (1980), 417–438 | DOI | MR | Zbl

[40] R. Bix, “Isomorphism theorems for octonion planes over local rings”, Trans. Amer. Math. Soc., 266:2 (1981), 423–439 | DOI | MR | Zbl

[41] A. Borel, “Le plan projectif des octaves et les sphéres commes espaces homogénes”, C. R. Acad. Sci. Paris, 230 (1950), 1378–1380 | MR | Zbl

[42] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular graphs, Springer–Verlag, NY et al., 1989 | MR

[43] R. B. Brown, “A minimal representation for the Lie algebra $\mathrm{E}_{7}$”, Ill. J. Math., 12:1 (1968), 190–200 | MR | Zbl

[44] R. B. Brown, “Groups of type $\mathrm{E}_7$”, J. Reine Angew. Math., 236 (1969), 79–102 | DOI | MR | Zbl

[45] N. Burgoyne, C. Williamson, Some computations involving simple Lie algebras, Proc. 2nd Symp. Symbolic and algebraic manipulation, Ass. Comp. Mach., NY, 1971

[46] R. W. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl

[47] R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, London et al., 1985 | MR | Zbl

[48] C. Chevalley, “Sur le groupe exceptionnel $(\mathrm{E}_{6})$”, C. R. Acad. Sci. Paris, 232 (1951), 1991–1993 | MR | Zbl

[49] C. Chevalley, R. D. Schafer, “The exceptional simple Lie algebras $\mathrm{F}_4$ and $\mathrm{E}_6$”, Proc. Nat. Acad. Sci. USA, 36 (1950), 137–141 | DOI | MR | Zbl

[50] A. M. Cohen, “Point-line spaces related to buildings”, Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, 647–737 | MR | Zbl

[51] A. M. Cohen, B. N. Cooperstein, “A characterization of some geometries of exceptional Lie type”, Geom. Dedic., 15:1 (1983), 73–105 | DOI | MR | Zbl

[52] A. M. Cohen, B. N. Cooperstein, “The $2$-spaces of the standard $\mathrm{E}_{6}(q)$-module”, Geom. Dedic., 25:1–3 (1988), 467–480 | MR | Zbl

[53] A. M. Cohen, R. H. Cushman, “Gröbner bases and standard monomial theory”, Computational algebraic geometry, Progress in Mathematics, 109, Birkhäuser, 1993, 41–60 | MR | Zbl

[54] A. M. Cohen, R. L. Griess, B. Lisser, “The group $L(2,61)$ embeds in the Lie group of type $\mathrm{E}_8$”, Comm. Algebra, 21:6 (1993), 1889–1907 | DOI | MR | Zbl

[55] A. M. Cohen, M. W. Liebeck, J. Saxl, G. M. Seitz, “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc., 64:1 (1992), 21–48 | DOI | MR | Zbl

[56] A. M. Cohen, S. H. Murray, Algorithm for Lang's theorem, arXiv: /math.GR/0506068v1

[57] A. M. Cohen, S. H. Murray, D. E. Taylor, “Computing in groups of Lie type”, Math. Comput., 73 (2004), 1477–1498 | DOI | MR | Zbl

[58] A. M. Cohen, D. B. Wales, “Embeddings of the group $L(2,13)$ in groups of Lie type $\mathrm{E}_6$”, Israel J. Math., 82:1–3 (1993), 45–86 | DOI | MR | Zbl

[59] A. M. Cohen, D. B. Wales, “Finite subgroups of $\mathrm{F}_4(C)$ and $\mathrm{E}_6(C)$”, Proc. London Math. Soc., 94 (1997), 105–150 | DOI | MR

[60] B. N. Cooperstein, “Subgroups of the group $\mathrm{E}_{6}(q)$ which are generated by root subgroups”, J. Algebra, 46:2 (1977), 355–388 | DOI | MR | Zbl

[61] B. N. Cooperstein, “The geometry of root subgroups in exceptional groups, I, II”, Geom. Dedic., 8 (1979), 317–381 ; 15 (1983), 1–45 | DOI | MR | Zbl | DOI | MR | Zbl

[62] B. N. Cooperstein, “Subgroups of exceptional groups of Lie type generated by long root subgroups, I, II”, J. Algebra, 70:1 (1981), 270–282 ; 283–298 | DOI | MR | Zbl

[63] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm{E}_{7}$. I: A four form for $\mathrm{E}_{7}$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl

[64] E. Corrigan, T. J. Hollowood, “The exceptional Jordan algebra and the superstring”, Comm. Math. Physics, 122 (1989), 393–410 | DOI | MR | Zbl

[65] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm{G}_2$ groups”, Trans Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[66] A. Elduque, A. V. Iltyakov, “On polynomial invariants of exceptional simple algebraic groups”, Canad. J. Math., 51:3 (1999), 506–522 | DOI | MR | Zbl

[67] D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in finite Chevalley groups of types $\mathrm{E}_6$, $\mathrm{E}_7$ and $\mathrm{E}_8$”, Comm. Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl

[68] J. R. Faulkner, “Orbits of the automorphism group of the exceptional Jordan algebra”, Trans. Amer. Math. Soc., 151:2 (1970), 433–441 | DOI | MR | Zbl

[69] J. R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Mem. Amer. Math. Soc., 104, 1970, 71 | MR | Zbl

[70] J. R. Faulkner, J. C. Ferrar, “Exceptional Lie algebras and related algebraic and geometric structures”, Trans. Amer. Math. Soc., 9 (1977), 1–35 | MR | Zbl

[71] J. C. Ferrar, “Lie algebras of type $\mathrm{E}_6$, I, II”, J. Algebra, 13:1 (1969), 57–72 ; 52:1 (1978), 201–209 | DOI | MR | Zbl | DOI | MR | Zbl

[72] P. Fleischmann, I. Janiszczak, “The semisimple conjugacy classes of finite groups of Lie type $\mathrm{E}_6$ and $\mathrm{E}_7$”, Comm. Algebra, 21:1 (1993), 93–161 | DOI | MR | Zbl

[73] P. Fleischmann, I. Janiszczak, “The semisimple conjugacy classes and the generic class number of the finite simple groups of Lie type $\mathrm{E}_8$”, Comm. Algebra, 22:6 (1994), 2221–2303 | DOI | MR | Zbl

[74] P. Fleischmann, I. Janiszczak, “On the computation of conjugacy classes of Chevalley groups”, Appl. Algebra Comm. Comput., 7:3 (1996), 221–234 | DOI | MR | Zbl

[75] I. B. Frenkel, V. Kac, “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62:2 (1980), 23–66 | DOI | MR | Zbl

[76] I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the Monster, Academic Press, NY et al., 1988 | MR

[77] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathematisch Institut der Rijksuniversiteit, Utrecht, 1951 ; Geom. Dedic., 19 (1985), 7–63 | MR | DOI | MR | Zbl

[78] H. Freudenthal, “Zur ebenen Oktavengeometrie”, Indag. Math., 15 (1953), 195–200 | MR

[79] H. Freudenthal, “Sur le groupe exceptionnel $\mathrm{E}_{7}$”, Proc. Nederl. Akad. Wetensch. Ser. A, 56 (1953), 81–89 | MR | Zbl

[80] H. Freudenthal, “Sur les invariantes caractéristiques des groupes semi-simples”, Proc. Nederl. Akad. Wetensch. Ser. A, 56 (1953), 81–89 | MR | Zbl

[81] H. Freudenthal, “Beziehungen der $\mathrm{E}_{7}$ und $\mathrm{E}_{8}$ zur Oktavenebene, I–XI”, Proc. Nederl. Akad. Wetensch. Ser. A, 57 (1954), 218–230, 363–368 ; 58 (1955), 151–157, 277–285 ; 62 (1959), 165–201, 447–474 ; 66 (1963), 457–487 | MR | Zbl | MR | Zbl | Zbl | MR | Zbl

[82] H. Freudenthal, “Lie groups in the foundations of geometry”, Adv. Math., 1 (1961), 145–190 | DOI | MR

[83] R. S. Garibaldi, “Structurable algebras and groups of type $\mathrm{E}_6$ and $\mathrm{E}_7$”, J. Algebra, 236:2 (2001), 651–691 | DOI | MR | Zbl

[84] R. S. Garibaldi, Cohomological invariants: exceptional groups and Spin groups, with an appendix by D. W. Hoffmann, Preprint Emory Univ. Atlanta, 2006 | MR

[85] R. S. Garibaldi, H. P. Peterson, Groups of outer type $\mathrm{E}_6$ with trivial Tits algebras, math.GR/0511229v1 arXiv: /math.GR/0511229v1

[86] P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedic., 25:1–3 (1988), 407–416 | MR | Zbl

[87] R. L. Griess, “A Moufang loop, the exceptional Jordan algebra, and a cubic form in 27 variables”, J. Algebra, 131:1 (1990), 281–293 | DOI | MR | Zbl

[88] M. Günaydin, “Generalized conformal and superconformal group actions and Jordan algebras”, Mod. Phys. Lett. A, 8 (1993), 1407–1416 | DOI | MR | Zbl

[89] M. Günaydin, K. Koepsell, H. Nicolai, “Conformal and quasiconformal realizations of exceptional Lie groups”, Comm. Math. Physics, 221 (2001), 57–76 | DOI | MR | Zbl

[90] R. M. Guralnik, M. W. Liebeck, D. Macpherson and G. M. Seitz, “Modules for algebraic groups with finitely many orbits on subspaces”, J. Algebra, 196:1 (1997), 211–250 | DOI | MR

[91] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[92] S. J. Haris, “Some irreducible representations of exceptional algebraic groups”, Amer. J. Math., 93:1 (1971), 75–106 | DOI | MR | Zbl

[93] R. Hazrat and N. A. Vavilov, “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[94] J.-Y. Hée, “Groupes de Chevalley et groupes classiques”, Publ. Math. Univ. Paris VII, 17 (1984), 1–54 | MR

[95] H. Hiller, Geometry of Coxeter groups, Pitman, Boston and London, 1982 | MR | Zbl

[96] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, Israel Math. Conf. Proc., 8 (1995), 1–182 | MR | Zbl

[97] R. B. Howlett, L. J. Rylands, D. E. Taylor, “Matrix generators for exceptional groups of Lie type”, J. Symb. Comput., 11 (2000), 1–17 | MR

[98] A. Iliev, L. Manivel, “On the Chow ring of the Cayley plane”, Compositio Math., 141 (2005), 146–160 | DOI | MR | Zbl

[99] A. V. Iltyakov, “On rational invariants of the group $\mathrm{E}_6$”, Proc. Amer. Math. Soc., 124:12 (1996), 3637–3640 | DOI | MR | Zbl

[100] N. Jacobson, “Some groups of transformations defined by Jordan algebras. II: Groups of type $\mathrm{F}_{4}$”, J. Reine Angew. Math., 204 (1960), 74–98 | DOI | MR | Zbl

[101] N. Jacobson, “Some groups of transformations defined by Jordan algebras. III: Groups of type $\mathrm{E}_{6\mathrm{I}}$”, J. Reine Angew. Math., 207 (1961), 61–85 | DOI | MR | Zbl

[102] N. Jacobson, Structure and representations of Jordan algebras, Colloquium Public., 39, American Mathematical Society, Providence, RI, 1968 | MR | Zbl

[103] N. Jacobson, Exceptional Lie algebras, Marcel Dekker, NY, 1971 | MR | Zbl

[104] V. Kac, Infinite dimensional Lie algebras, 2nd ed., Cambridge Univ. Press, 1985 | MR | Zbl

[105] P. B. Kleidman and R. A. Wilson, “The maximal subgroups of $\mathrm{E}_6(2)$ and $\operatorname{Aut}(\mathrm{E}_6(2))$”, Proc. London Math. Soc., 60:2 (1990), 266–294 | DOI | MR | Zbl

[106] P. B. Kleidman and R. A. Wilson, “$J_3\mathrm{E}_6(4)$ and $M_{12}\mathrm{E}_6(5)$”, J. London Math. Soc., 42:3 (1990), 555–561 | DOI | MR | Zbl

[107] P. B. Kleidman and R. A. Wilson, “Sporadic simple subgroups of finite exceptional groups of Lie type”, J. Algebra, 157:2 (1993), 316–330 | DOI | MR | Zbl

[108] M. A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of Involutions, Coll. Publ., 44, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[109] J. M. Landsberg and L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Algebra, 239:2 (2001), 477–512 | DOI | MR | Zbl

[110] R. Lawther, “Jordan block sizes of unipotent elements in exceptional algebraic groups”, Comm. Algebra, 23:11 (1995), 4125–4156 | DOI | MR | Zbl

[111] R. Lawther, D. M. Testerman, $\mathrm{A}_1$ subgroups of exceptional algebraic groups, Mem. Amer. Math Soc., 674, 1999 | MR | Zbl

[112] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[113] M. W. Liebeck, “Subgroups of exceptional groups”, Algebraic groups and their representations (Cambridge, 1997), Kluwer Acad. Publ., Dordrecht, 1998, 275–290 | MR | Zbl

[114] M. W. Liebeck, J. Saxl, G. M. Seitz, “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc., 65:2 (1992), 297–325 | DOI | MR | Zbl

[115] M. W. Liebeck, G. M. Seitz, “Maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Geom. Dedic., 36 (1990), 353–387 | MR

[116] M. W. Liebeck, G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 580, 1996 | MR | Zbl

[117] M. W. Liebeck, G. M. Seitz, “On the subgroup structure of exceptional groups of Lie type”, Trans. Amer. Math. Soc., 350:9 (1998), 3409–3482 | DOI | MR | Zbl

[118] M. W. Liebeck, G. M. Seitz, “On finite subgroups of exceptional algebraic groups”, J. Reine Angew. Math., 515 (1999), 25–72 | DOI | MR | Zbl

[119] M. W. Liebeck, G. M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Preprint Univ. Oregon, 2005, 1–230 | MR

[120] G. Lusztig, Introduction to quantum groups, Birkhäuser, Boston et al., 1993 | MR | Zbl

[121] R. E. Maeder, Programming in Mathematica, 3rd ed., Addison-Wesley, 1996

[122] J. G. M. Mars, “Les nombres de Tamagawa de certains groupes exceptionnels”, Bull. Soc. Math. France, 94 (1966), 97–140 | MR | Zbl

[123] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. Ecole Norm. Sup., 4ème sér, 1969, no. 2, 1–62 | MR | Zbl

[124] K. Mizuno, “The conjugate classes of Chevalley groups of type $\mathrm{E}_{6}$”, J. Fac. Sci. Univ. Tokyo, 24:3 (1977), 525–563 | MR | Zbl

[125] K. Mizuno, “The conjugate classes of unipotent elements of the Chevalley groups $\mathrm{E}_{7}$ and $\mathrm{E}_{8}$”, Tokyo J. Math., 3:2 (1980), 391–458 | DOI | MR

[126] Ch. Parker, G. E. Röhrle, Minuscule Representations, Preprint Universität Bielefeld, No 72, 1993, 1–12

[127] V. Petrov, N. Semenov, K. Zainoulline, Zero cycles on a twisted Cayley plane, arXiv: /math.AG/0508200v2 | MR

[128] E. B. Plotkin, “Stability theorems for $K$-functors for Chevalley groups”, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima, 1990), World Sci., London et al., 1991, 203–217 | MR | Zbl

[129] E. B. Plotkin, “On the stability of $\mathrm{K}_1$-functor for Chevalley groups of type $\mathrm{E}_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[130] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra and Computations, 8:1 (1998), 61–97 | DOI | MR

[131] R. Richardson, G. E. Röhrle, R. Steinberg, “Parabolic subgroups with abelian unipotent radical”, Invent. Math., 110:3 (1992), 649–671 | DOI | MR | Zbl

[132] G. E. Röhrle, “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl

[133] G. E. Röhrle, “On extraspecial parabolic subgroups”, Linear algebraic groups and their representations, Contemp. Math., 153, American Mathematical Society, 1993, 143–155 | MR | Zbl

[134] L. J. Rylands, D. E. Taylor, Construction for octonion and exceptional Jordan algebras, Preprint Univ. Sydney, 2000, 1–11 | MR | Zbl

[135] R. Scharlau, “Buildings”, Handbook of Incidence Geometries, North Holland, Amsterdam, 1995, 477–645 | MR | Zbl

[136] G. M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 441, 1989 | MR

[137] G. M. Seitz,, “Maximal subgroups of finite exceptional groups”, Groups and geometries (Siena, 1996), Birkhäuser, Basel et al., 1998, 155–161 | MR | Zbl

[138] S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, Applications of algebraic K-theory to algebraic geometry and number theory, Part. II, Contemp. Math., 55, 1986, 635–687 | MR | Zbl

[139] T. A. Springer, “The projective octave plane, I, II”, Indag. Math., 22 (1962), 74–101 | MR

[140] T. A. Springer, “Characterisation of a class of cubic forms”, Indag. Math., 24 (1962), 259–265 | MR

[141] T. A. Springer, “On the geometric algebra of the projective octave plane”, Indag. Math., 24 (1962), 451–468 | MR

[142] T. A. Springer, Linear algebraic groups, 2nd ed., Birkhäuser, Boston et al., 1981 | MR | Zbl

[143] T. A. Springer, F. D. Veldkamp, “On Hjelmslev–Moufang planes”, Math. Z., 107 (1968), 249–263 | DOI | MR | Zbl

[144] T. A. Springer, F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer, Berlin et al., 2000 | MR | Zbl

[145] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[146] M. R. Stein, “Stability theorems for $K_{1}$, $K_{2}$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl

[147] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a Theme with variations”, K-theory, 19 (2000), 109–153 | DOI | MR | Zbl

[148] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl

[149] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Part II, Contemp. Math., 55, 1986, 693–710 | MR | Zbl

[150] D. M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 390, 1988 | MR | Zbl

[151] D. M. Testerman, “A construction of certain maximal subgroups of the algebraic groups $\mathrm{E}_{6}$ and $\mathrm{F}_{4}$”, Comm. Algebra, 17:4 (1989), 1003–1016 | DOI | MR | Zbl

[152] F. G. Timmesfeld, “Moufang planes and the groups $\mathrm{E}_6^K$ and $\mathrm{S}L_2(K)$, $K$ a Cayley division algebra”, Forum Math., 6:2 (1994), 209–231 | DOI | MR | Zbl

[153] J. Tits, “Le plan projective des octaves et les groupes de Lie exceptionnels”, Acad. Roy. Belg. Bull. Cl. Sci., 39 (1953), 309–329 | MR | Zbl

[154] J. Tits, “Le plan projective des octaves et les groupes exceptionnels $\mathrm{E}_{6}$ et $\mathrm{E}_{7}$”, Acad. Roy. Belg. Bull. Cl. Sci., 40 (1954), 29–40 | MR | Zbl

[155] J. Tits, “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Publ. Math. Inst. Hautes Et. Sci., 1966, no. 31, 21–58 | DOI | MR

[156] J. Tits, “Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I: Construction”, Indag. Math., 1966, no. 28, 223–237 | MR | Zbl

[157] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[158] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[159] N. A. Vavilov, Weight elements of Chevalley groups, Preprint Univ. Warwick, No 35, 1994, 1–46 | MR

[160] N. A. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc Conf. Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press., 1995, 233–280 | MR | Zbl

[161] N. A. Vavilov, “Unipotent elements in subgroups which contain a split maximal torus”, J. Algebra, 176:2 (1995), 356–367 | DOI | MR | Zbl

[162] N. A. Vavilov, “A third look at weight diagrams”, Rendiconti del Seminario Matem. dell'Univ. di Padova, 104 (2000), 201–250 | MR | Zbl

[163] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $E_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 | MR | Zbl

[164] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR

[165] F. D. Veldkamp, “Unitary groups in projective octave planes”, Compositio Math., 19 (1968), 213–258 | MR | Zbl

[166] F. D. Veldkamp, “Collineation groups in Hjelmslev–Moufang planes”, Math. Z, 108:1 (1968), 37–52 | DOI | MR | Zbl

[167] F. D. Veldkamp, “Unitary groups in Hjelmslev–Moufang planes”, Math. Z, 108:2 (1969), 288–312 | DOI | MR | Zbl

[168] S. Wagon, Mathematica in Action, Springer-Verlag, 1999 | Zbl

[169] N. J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Preprint Univ. New South Wales, 2001, 1–11 | MR | Zbl

[170] S. Wolfram, The Mathematica, 5th ed., Wolfram Media, 2003, 1–1464