@article{ZNSL_2006_338_a0,
author = {N. A. Vavilov and A. Yu. Luzgarev and I. M. Pevzner},
title = {Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--68},
year = {2006},
volume = {338},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/}
}
TY - JOUR AU - N. A. Vavilov AU - A. Yu. Luzgarev AU - I. M. Pevzner TI - Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 5 EP - 68 VL - 338 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/ LA - ru ID - ZNSL_2006_338_a0 ER -
N. A. Vavilov; A. Yu. Luzgarev; I. M. Pevzner. Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 5-68. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a0/
[1] E. Abe, “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl
[2] A. Borel, “Svoistva i lineinye predstavleniya Shevalle”, Seminar po algebraicheskim gruppam, M., 1973, 9–59 | MR
[3] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, M., 1972 | Zbl
[4] N. Burbaki, Gruppy i algebry Li, Glavy VII, VIII, M., 1978 | MR
[5] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Tr. Leningr. Mat. Ob-va, 1, 1990, 64–109 | MR
[6] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i Analiz, 19:4 (2007), 34–68 | MR
[7] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm{E}_6$ i $\mathrm{E}_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl
[8] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle”, dokazatelstvo iz knigi, Zap. nauchn. sem. POMI, 330, 2006, 36–76 | MR | Zbl
[9] N. A. Vavilov, S. I. Nikolenko, “$\mathrm{A}_2$-dokazatelstvo strukturnykh teorem dlya gruppy Shevalle tipa $\mathrm{F}_4$”, Algebra i analiz, 20:4 (2008), 27–63 | MR
[10] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 40:1 (1990), 145–147 | MR
[11] N. A. Vavilov, V. G. Khalin, Mathematica 5. 1. Pervoe znakomstvo, dlya nematematika, OTsEiM, SPb, 2005
[12] N. A. Vavilov, V. G. Khalin, Mathematica 5. 2. Osnovy sintaksisa, dlya nematematika, OTsEiM, SPb, 2005
[13] V. G. Kazakevich, A. K. Stavrova, “Podgruppy, normalizuemye kommutantom podgruppy Levi”, Zap. nauchn. sem. POMI, 319, 2004, 199–215 | MR | Zbl
[14] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR
[15] A. Yu. Luzgarev, “O nadgruppakh $\mathrm{E}(\mathrm{E}_6,R)$ i $\mathrm{E}(\mathrm{E}_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. sem. POMI, 319, 2004, 216–243 | MR | Zbl
[16] Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Nauka, M., 1972 | MR
[17] E. B. Plotkin, “Syur'ektivnaya stabilizatsiya $\mathrm{K}_1$-funktora dlya nekotorykh isklyuchitelnykh grupp Shevalle”, Zap. nauchn. sem. POMI, 198, 1991, 65–88 | MR | Zbl
[18] M. Rid, Algebraicheskaya geometriya dlya vsekh, Mir, M., 1989 | MR
[19] N. S. Semenov, “Odin argument v polzu gurvitsevosti $G_{\mathrm{sc}}(\mathrm{E}_6,q)$”, Zap. nauchn. sem. POMI, 305, 2003, 228–237 | MR
[20] T. A. Springer, “Lineinye algebraicheskie gruppy”, Itogi nauki i tekhn. Ser. sovr. probl. mat. Fundam. napravl., 55, VINITI, 1989, 5–136 | MR
[21] R. Steinberg, Lektsii o gruppakh Shevalle, M., 1975
[22] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR
[23] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
[24] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[25] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl
[26] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Commun. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl
[27] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR
[28] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Algebraic $K$-theory and algebraic number theory, Proc. Semin., Contemp. Math., 83, 1989, 1–17 | MR | Zbl
[29] E. Abe, J. Hurley, “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl
[30] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl
[31] M. Aschbacher, “The 27-dimensional module for $\mathrm{E}_6$, I–IV”, Invent. Math., 89:1 (1987), 159–195 ; J. London Math. Soc., 37 (1988), 275–293 ; Trans. Amer. Math. Soc., 321 (1990), 45–84 ; J. Algebra, 131:1 (1990), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[32] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedic., 25:1–3 (1988), 417–465 | MR | Zbl
[33] M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, 1990, 75–84 | MR
[34] H. Azad, “Structure constants of algebraic groups”, J. Algebra, 75:1 (1982), 209–222 | DOI | MR | Zbl
[35] H. Azad, “The Jacobi identity”, Punjab Univ. J. Math., 16 (1983), 9–29 | MR | Zbl
[36] H. Azad, M. Barry, G. M. Seitz, “On the structure of parabolic subgroups”, Comm. Algebra, 18:2 (1990), 551–562 | DOI | MR | Zbl
[37] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205 | DOI | MR | Zbl
[38] J. Baez, “Review of J. H. Conway, D. A. Smith, On quaternions and octonions: their geometry, arithmetic and symmetry”, Bull. Amer. Math. Soc., 42:2 (2005), 229–243 | DOI | MR
[39] R. Bix, “Octonion planes over local rings”, Trans. Amer. Math. Soc., 261:1 (1980), 417–438 | DOI | MR | Zbl
[40] R. Bix, “Isomorphism theorems for octonion planes over local rings”, Trans. Amer. Math. Soc., 266:2 (1981), 423–439 | DOI | MR | Zbl
[41] A. Borel, “Le plan projectif des octaves et les sphéres commes espaces homogénes”, C. R. Acad. Sci. Paris, 230 (1950), 1378–1380 | MR | Zbl
[42] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular graphs, Springer–Verlag, NY et al., 1989 | MR
[43] R. B. Brown, “A minimal representation for the Lie algebra $\mathrm{E}_{7}$”, Ill. J. Math., 12:1 (1968), 190–200 | MR | Zbl
[44] R. B. Brown, “Groups of type $\mathrm{E}_7$”, J. Reine Angew. Math., 236 (1969), 79–102 | DOI | MR | Zbl
[45] N. Burgoyne, C. Williamson, Some computations involving simple Lie algebras, Proc. 2nd Symp. Symbolic and algebraic manipulation, Ass. Comp. Mach., NY, 1971
[46] R. W. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl
[47] R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, London et al., 1985 | MR | Zbl
[48] C. Chevalley, “Sur le groupe exceptionnel $(\mathrm{E}_{6})$”, C. R. Acad. Sci. Paris, 232 (1951), 1991–1993 | MR | Zbl
[49] C. Chevalley, R. D. Schafer, “The exceptional simple Lie algebras $\mathrm{F}_4$ and $\mathrm{E}_6$”, Proc. Nat. Acad. Sci. USA, 36 (1950), 137–141 | DOI | MR | Zbl
[50] A. M. Cohen, “Point-line spaces related to buildings”, Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, 647–737 | MR | Zbl
[51] A. M. Cohen, B. N. Cooperstein, “A characterization of some geometries of exceptional Lie type”, Geom. Dedic., 15:1 (1983), 73–105 | DOI | MR | Zbl
[52] A. M. Cohen, B. N. Cooperstein, “The $2$-spaces of the standard $\mathrm{E}_{6}(q)$-module”, Geom. Dedic., 25:1–3 (1988), 467–480 | MR | Zbl
[53] A. M. Cohen, R. H. Cushman, “Gröbner bases and standard monomial theory”, Computational algebraic geometry, Progress in Mathematics, 109, Birkhäuser, 1993, 41–60 | MR | Zbl
[54] A. M. Cohen, R. L. Griess, B. Lisser, “The group $L(2,61)$ embeds in the Lie group of type $\mathrm{E}_8$”, Comm. Algebra, 21:6 (1993), 1889–1907 | DOI | MR | Zbl
[55] A. M. Cohen, M. W. Liebeck, J. Saxl, G. M. Seitz, “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc., 64:1 (1992), 21–48 | DOI | MR | Zbl
[56] A. M. Cohen, S. H. Murray, Algorithm for Lang's theorem, arXiv: /math.GR/0506068v1
[57] A. M. Cohen, S. H. Murray, D. E. Taylor, “Computing in groups of Lie type”, Math. Comput., 73 (2004), 1477–1498 | DOI | MR | Zbl
[58] A. M. Cohen, D. B. Wales, “Embeddings of the group $L(2,13)$ in groups of Lie type $\mathrm{E}_6$”, Israel J. Math., 82:1–3 (1993), 45–86 | DOI | MR | Zbl
[59] A. M. Cohen, D. B. Wales, “Finite subgroups of $\mathrm{F}_4(C)$ and $\mathrm{E}_6(C)$”, Proc. London Math. Soc., 94 (1997), 105–150 | DOI | MR
[60] B. N. Cooperstein, “Subgroups of the group $\mathrm{E}_{6}(q)$ which are generated by root subgroups”, J. Algebra, 46:2 (1977), 355–388 | DOI | MR | Zbl
[61] B. N. Cooperstein, “The geometry of root subgroups in exceptional groups, I, II”, Geom. Dedic., 8 (1979), 317–381 ; 15 (1983), 1–45 | DOI | MR | Zbl | DOI | MR | Zbl
[62] B. N. Cooperstein, “Subgroups of exceptional groups of Lie type generated by long root subgroups, I, II”, J. Algebra, 70:1 (1981), 270–282 ; 283–298 | DOI | MR | Zbl
[63] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm{E}_{7}$. I: A four form for $\mathrm{E}_{7}$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl
[64] E. Corrigan, T. J. Hollowood, “The exceptional Jordan algebra and the superstring”, Comm. Math. Physics, 122 (1989), 393–410 | DOI | MR | Zbl
[65] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm{G}_2$ groups”, Trans Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl
[66] A. Elduque, A. V. Iltyakov, “On polynomial invariants of exceptional simple algebraic groups”, Canad. J. Math., 51:3 (1999), 506–522 | DOI | MR | Zbl
[67] D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in finite Chevalley groups of types $\mathrm{E}_6$, $\mathrm{E}_7$ and $\mathrm{E}_8$”, Comm. Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl
[68] J. R. Faulkner, “Orbits of the automorphism group of the exceptional Jordan algebra”, Trans. Amer. Math. Soc., 151:2 (1970), 433–441 | DOI | MR | Zbl
[69] J. R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Mem. Amer. Math. Soc., 104, 1970, 71 | MR | Zbl
[70] J. R. Faulkner, J. C. Ferrar, “Exceptional Lie algebras and related algebraic and geometric structures”, Trans. Amer. Math. Soc., 9 (1977), 1–35 | MR | Zbl
[71] J. C. Ferrar, “Lie algebras of type $\mathrm{E}_6$, I, II”, J. Algebra, 13:1 (1969), 57–72 ; 52:1 (1978), 201–209 | DOI | MR | Zbl | DOI | MR | Zbl
[72] P. Fleischmann, I. Janiszczak, “The semisimple conjugacy classes of finite groups of Lie type $\mathrm{E}_6$ and $\mathrm{E}_7$”, Comm. Algebra, 21:1 (1993), 93–161 | DOI | MR | Zbl
[73] P. Fleischmann, I. Janiszczak, “The semisimple conjugacy classes and the generic class number of the finite simple groups of Lie type $\mathrm{E}_8$”, Comm. Algebra, 22:6 (1994), 2221–2303 | DOI | MR | Zbl
[74] P. Fleischmann, I. Janiszczak, “On the computation of conjugacy classes of Chevalley groups”, Appl. Algebra Comm. Comput., 7:3 (1996), 221–234 | DOI | MR | Zbl
[75] I. B. Frenkel, V. Kac, “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62:2 (1980), 23–66 | DOI | MR | Zbl
[76] I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the Monster, Academic Press, NY et al., 1988 | MR
[77] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathematisch Institut der Rijksuniversiteit, Utrecht, 1951 ; Geom. Dedic., 19 (1985), 7–63 | MR | DOI | MR | Zbl
[78] H. Freudenthal, “Zur ebenen Oktavengeometrie”, Indag. Math., 15 (1953), 195–200 | MR
[79] H. Freudenthal, “Sur le groupe exceptionnel $\mathrm{E}_{7}$”, Proc. Nederl. Akad. Wetensch. Ser. A, 56 (1953), 81–89 | MR | Zbl
[80] H. Freudenthal, “Sur les invariantes caractéristiques des groupes semi-simples”, Proc. Nederl. Akad. Wetensch. Ser. A, 56 (1953), 81–89 | MR | Zbl
[81] H. Freudenthal, “Beziehungen der $\mathrm{E}_{7}$ und $\mathrm{E}_{8}$ zur Oktavenebene, I–XI”, Proc. Nederl. Akad. Wetensch. Ser. A, 57 (1954), 218–230, 363–368 ; 58 (1955), 151–157, 277–285 ; 62 (1959), 165–201, 447–474 ; 66 (1963), 457–487 | MR | Zbl | MR | Zbl | Zbl | MR | Zbl
[82] H. Freudenthal, “Lie groups in the foundations of geometry”, Adv. Math., 1 (1961), 145–190 | DOI | MR
[83] R. S. Garibaldi, “Structurable algebras and groups of type $\mathrm{E}_6$ and $\mathrm{E}_7$”, J. Algebra, 236:2 (2001), 651–691 | DOI | MR | Zbl
[84] R. S. Garibaldi, Cohomological invariants: exceptional groups and Spin groups, with an appendix by D. W. Hoffmann, Preprint Emory Univ. Atlanta, 2006 | MR
[85] R. S. Garibaldi, H. P. Peterson, Groups of outer type $\mathrm{E}_6$ with trivial Tits algebras, math.GR/0511229v1 arXiv: /math.GR/0511229v1
[86] P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedic., 25:1–3 (1988), 407–416 | MR | Zbl
[87] R. L. Griess, “A Moufang loop, the exceptional Jordan algebra, and a cubic form in 27 variables”, J. Algebra, 131:1 (1990), 281–293 | DOI | MR | Zbl
[88] M. Günaydin, “Generalized conformal and superconformal group actions and Jordan algebras”, Mod. Phys. Lett. A, 8 (1993), 1407–1416 | DOI | MR | Zbl
[89] M. Günaydin, K. Koepsell, H. Nicolai, “Conformal and quasiconformal realizations of exceptional Lie groups”, Comm. Math. Physics, 221 (2001), 57–76 | DOI | MR | Zbl
[90] R. M. Guralnik, M. W. Liebeck, D. Macpherson and G. M. Seitz, “Modules for algebraic groups with finitely many orbits on subspaces”, J. Algebra, 196:1 (1997), 211–250 | DOI | MR
[91] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl
[92] S. J. Haris, “Some irreducible representations of exceptional algebraic groups”, Amer. J. Math., 93:1 (1971), 75–106 | DOI | MR | Zbl
[93] R. Hazrat and N. A. Vavilov, “$\mathrm{K}_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[94] J.-Y. Hée, “Groupes de Chevalley et groupes classiques”, Publ. Math. Univ. Paris VII, 17 (1984), 1–54 | MR
[95] H. Hiller, Geometry of Coxeter groups, Pitman, Boston and London, 1982 | MR | Zbl
[96] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, Israel Math. Conf. Proc., 8 (1995), 1–182 | MR | Zbl
[97] R. B. Howlett, L. J. Rylands, D. E. Taylor, “Matrix generators for exceptional groups of Lie type”, J. Symb. Comput., 11 (2000), 1–17 | MR
[98] A. Iliev, L. Manivel, “On the Chow ring of the Cayley plane”, Compositio Math., 141 (2005), 146–160 | DOI | MR | Zbl
[99] A. V. Iltyakov, “On rational invariants of the group $\mathrm{E}_6$”, Proc. Amer. Math. Soc., 124:12 (1996), 3637–3640 | DOI | MR | Zbl
[100] N. Jacobson, “Some groups of transformations defined by Jordan algebras. II: Groups of type $\mathrm{F}_{4}$”, J. Reine Angew. Math., 204 (1960), 74–98 | DOI | MR | Zbl
[101] N. Jacobson, “Some groups of transformations defined by Jordan algebras. III: Groups of type $\mathrm{E}_{6\mathrm{I}}$”, J. Reine Angew. Math., 207 (1961), 61–85 | DOI | MR | Zbl
[102] N. Jacobson, Structure and representations of Jordan algebras, Colloquium Public., 39, American Mathematical Society, Providence, RI, 1968 | MR | Zbl
[103] N. Jacobson, Exceptional Lie algebras, Marcel Dekker, NY, 1971 | MR | Zbl
[104] V. Kac, Infinite dimensional Lie algebras, 2nd ed., Cambridge Univ. Press, 1985 | MR | Zbl
[105] P. B. Kleidman and R. A. Wilson, “The maximal subgroups of $\mathrm{E}_6(2)$ and $\operatorname{Aut}(\mathrm{E}_6(2))$”, Proc. London Math. Soc., 60:2 (1990), 266–294 | DOI | MR | Zbl
[106] P. B. Kleidman and R. A. Wilson, “$J_3\mathrm{E}_6(4)$ and $M_{12}\mathrm{E}_6(5)$”, J. London Math. Soc., 42:3 (1990), 555–561 | DOI | MR | Zbl
[107] P. B. Kleidman and R. A. Wilson, “Sporadic simple subgroups of finite exceptional groups of Lie type”, J. Algebra, 157:2 (1993), 316–330 | DOI | MR | Zbl
[108] M. A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of Involutions, Coll. Publ., 44, American Mathematical Society, Providence, RI, 1998 | MR | Zbl
[109] J. M. Landsberg and L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Algebra, 239:2 (2001), 477–512 | DOI | MR | Zbl
[110] R. Lawther, “Jordan block sizes of unipotent elements in exceptional algebraic groups”, Comm. Algebra, 23:11 (1995), 4125–4156 | DOI | MR | Zbl
[111] R. Lawther, D. M. Testerman, $\mathrm{A}_1$ subgroups of exceptional algebraic groups, Mem. Amer. Math Soc., 674, 1999 | MR | Zbl
[112] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl
[113] M. W. Liebeck, “Subgroups of exceptional groups”, Algebraic groups and their representations (Cambridge, 1997), Kluwer Acad. Publ., Dordrecht, 1998, 275–290 | MR | Zbl
[114] M. W. Liebeck, J. Saxl, G. M. Seitz, “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc., 65:2 (1992), 297–325 | DOI | MR | Zbl
[115] M. W. Liebeck, G. M. Seitz, “Maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Geom. Dedic., 36 (1990), 353–387 | MR
[116] M. W. Liebeck, G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 580, 1996 | MR | Zbl
[117] M. W. Liebeck, G. M. Seitz, “On the subgroup structure of exceptional groups of Lie type”, Trans. Amer. Math. Soc., 350:9 (1998), 3409–3482 | DOI | MR | Zbl
[118] M. W. Liebeck, G. M. Seitz, “On finite subgroups of exceptional algebraic groups”, J. Reine Angew. Math., 515 (1999), 25–72 | DOI | MR | Zbl
[119] M. W. Liebeck, G. M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Preprint Univ. Oregon, 2005, 1–230 | MR
[120] G. Lusztig, Introduction to quantum groups, Birkhäuser, Boston et al., 1993 | MR | Zbl
[121] R. E. Maeder, Programming in Mathematica, 3rd ed., Addison-Wesley, 1996
[122] J. G. M. Mars, “Les nombres de Tamagawa de certains groupes exceptionnels”, Bull. Soc. Math. France, 94 (1966), 97–140 | MR | Zbl
[123] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. Ecole Norm. Sup., 4ème sér, 1969, no. 2, 1–62 | MR | Zbl
[124] K. Mizuno, “The conjugate classes of Chevalley groups of type $\mathrm{E}_{6}$”, J. Fac. Sci. Univ. Tokyo, 24:3 (1977), 525–563 | MR | Zbl
[125] K. Mizuno, “The conjugate classes of unipotent elements of the Chevalley groups $\mathrm{E}_{7}$ and $\mathrm{E}_{8}$”, Tokyo J. Math., 3:2 (1980), 391–458 | DOI | MR
[126] Ch. Parker, G. E. Röhrle, Minuscule Representations, Preprint Universität Bielefeld, No 72, 1993, 1–12
[127] V. Petrov, N. Semenov, K. Zainoulline, Zero cycles on a twisted Cayley plane, arXiv: /math.AG/0508200v2 | MR
[128] E. B. Plotkin, “Stability theorems for $K$-functors for Chevalley groups”, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima, 1990), World Sci., London et al., 1991, 203–217 | MR | Zbl
[129] E. B. Plotkin, “On the stability of $\mathrm{K}_1$-functor for Chevalley groups of type $\mathrm{E}_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl
[130] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra and Computations, 8:1 (1998), 61–97 | DOI | MR
[131] R. Richardson, G. E. Röhrle, R. Steinberg, “Parabolic subgroups with abelian unipotent radical”, Invent. Math., 110:3 (1992), 649–671 | DOI | MR | Zbl
[132] G. E. Röhrle, “On the structure of parabolic subgroups in algebraic groups”, J. Algebra, 157:1 (1993), 80–115 | DOI | MR | Zbl
[133] G. E. Röhrle, “On extraspecial parabolic subgroups”, Linear algebraic groups and their representations, Contemp. Math., 153, American Mathematical Society, 1993, 143–155 | MR | Zbl
[134] L. J. Rylands, D. E. Taylor, Construction for octonion and exceptional Jordan algebras, Preprint Univ. Sydney, 2000, 1–11 | MR | Zbl
[135] R. Scharlau, “Buildings”, Handbook of Incidence Geometries, North Holland, Amsterdam, 1995, 477–645 | MR | Zbl
[136] G. M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 441, 1989 | MR
[137] G. M. Seitz,, “Maximal subgroups of finite exceptional groups”, Groups and geometries (Siena, 1996), Birkhäuser, Basel et al., 1998, 155–161 | MR | Zbl
[138] S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, Applications of algebraic K-theory to algebraic geometry and number theory, Part. II, Contemp. Math., 55, 1986, 635–687 | MR | Zbl
[139] T. A. Springer, “The projective octave plane, I, II”, Indag. Math., 22 (1962), 74–101 | MR
[140] T. A. Springer, “Characterisation of a class of cubic forms”, Indag. Math., 24 (1962), 259–265 | MR
[141] T. A. Springer, “On the geometric algebra of the projective octave plane”, Indag. Math., 24 (1962), 451–468 | MR
[142] T. A. Springer, Linear algebraic groups, 2nd ed., Birkhäuser, Boston et al., 1981 | MR | Zbl
[143] T. A. Springer, F. D. Veldkamp, “On Hjelmslev–Moufang planes”, Math. Z., 107 (1968), 249–263 | DOI | MR | Zbl
[144] T. A. Springer, F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer, Berlin et al., 2000 | MR | Zbl
[145] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl
[146] M. R. Stein, “Stability theorems for $K_{1}$, $K_{2}$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl
[147] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a Theme with variations”, K-theory, 19 (2000), 109–153 | DOI | MR | Zbl
[148] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl
[149] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Part II, Contemp. Math., 55, 1986, 693–710 | MR | Zbl
[150] D. M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 390, 1988 | MR | Zbl
[151] D. M. Testerman, “A construction of certain maximal subgroups of the algebraic groups $\mathrm{E}_{6}$ and $\mathrm{F}_{4}$”, Comm. Algebra, 17:4 (1989), 1003–1016 | DOI | MR | Zbl
[152] F. G. Timmesfeld, “Moufang planes and the groups $\mathrm{E}_6^K$ and $\mathrm{S}L_2(K)$, $K$ a Cayley division algebra”, Forum Math., 6:2 (1994), 209–231 | DOI | MR | Zbl
[153] J. Tits, “Le plan projective des octaves et les groupes de Lie exceptionnels”, Acad. Roy. Belg. Bull. Cl. Sci., 39 (1953), 309–329 | MR | Zbl
[154] J. Tits, “Le plan projective des octaves et les groupes exceptionnels $\mathrm{E}_{6}$ et $\mathrm{E}_{7}$”, Acad. Roy. Belg. Bull. Cl. Sci., 40 (1954), 29–40 | MR | Zbl
[155] J. Tits, “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Publ. Math. Inst. Hautes Et. Sci., 1966, no. 31, 21–58 | DOI | MR
[156] J. Tits, “Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I: Construction”, Indag. Math., 1966, no. 28, 223–237 | MR | Zbl
[157] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR
[158] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl
[159] N. A. Vavilov, Weight elements of Chevalley groups, Preprint Univ. Warwick, No 35, 1994, 1–46 | MR
[160] N. A. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc Conf. Groups of Lie Type and their Geometries (Como, 1993), Cambridge Univ. Press., 1995, 233–280 | MR | Zbl
[161] N. A. Vavilov, “Unipotent elements in subgroups which contain a split maximal torus”, J. Algebra, 176:2 (1995), 356–367 | DOI | MR | Zbl
[162] N. A. Vavilov, “A third look at weight diagrams”, Rendiconti del Seminario Matem. dell'Univ. di Padova, 104 (2000), 201–250 | MR | Zbl
[163] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $E_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 | MR | Zbl
[164] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I: Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR
[165] F. D. Veldkamp, “Unitary groups in projective octave planes”, Compositio Math., 19 (1968), 213–258 | MR | Zbl
[166] F. D. Veldkamp, “Collineation groups in Hjelmslev–Moufang planes”, Math. Z, 108:1 (1968), 37–52 | DOI | MR | Zbl
[167] F. D. Veldkamp, “Unitary groups in Hjelmslev–Moufang planes”, Math. Z, 108:2 (1969), 288–312 | DOI | MR | Zbl
[168] S. Wagon, Mathematica in Action, Springer-Verlag, 1999 | Zbl
[169] N. J. Wildberger, A combinatorial construction for simply-laced Lie algebras, Preprint Univ. New South Wales, 2001, 1–11 | MR | Zbl
[170] S. Wolfram, The Mathematica, 5th ed., Wolfram Media, 2003, 1–1464