Sums of squares over the Fibonacci $\circ$-ring
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 165-190

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers Diophantine equations of the form $$ X_1^2+[(X_1+1)\tau]^2+\cdots+X_k^2+[(X_k+1)\tau]^2=A, $$ where $X_i,A\in\mathbb Z$ ($A\ge 0$) are rational integers; $k=2,3,4$, $\tau=(-1+\sqrt{5})/2$ is the golden section, and $[*]$ denotes the integral part of a number. For these equations, the solvability conditions are found, and lower bounds for the number of solutions are obtained. The equations considered are closely related to equations of the form $$ X_1\circ X_1+\cdots+X_k\circ X_k=A, $$ where $\circ$ denotes the Knuth circle multiplication. Bibliography: 18 titles.
@article{ZNSL_2006_337_a9,
     author = {V. G. Zhuravlev},
     title = {Sums of squares over the {Fibonacci} $\circ$-ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--190},
     publisher = {mathdoc},
     volume = {337},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a9/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Sums of squares over the Fibonacci $\circ$-ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 165
EP  - 190
VL  - 337
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a9/
LA  - ru
ID  - ZNSL_2006_337_a9
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Sums of squares over the Fibonacci $\circ$-ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 165-190
%V 337
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a9/
%G ru
%F ZNSL_2006_337_a9
V. G. Zhuravlev. Sums of squares over the Fibonacci $\circ$-ring. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 165-190. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a9/