On approximating periodic functions using linear approximation methods
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 134-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, a generalization of a known theorem by Hardy and Young is obtained; a formula interrelating the integral of a $2\pi$-periodic function over the period with the integral over the entire axis is established; new approximation characteristics for functions belonging to saturation classes of continuity modules of different orders for the spaces $L_p$ of periodic functions are provided, and some issues concerning approximation, in the uniform metric, of continuous periodic functions even with respect to each of their variables and having nonnegative Fourier coefficients are considered. Bibliography: 17 titles.
@article{ZNSL_2006_337_a8,
     author = {A. S. Zhuk and V. V. Zhuk},
     title = {On approximating periodic functions using linear approximation methods},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--164},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a8/}
}
TY  - JOUR
AU  - A. S. Zhuk
AU  - V. V. Zhuk
TI  - On approximating periodic functions using linear approximation methods
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 134
EP  - 164
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a8/
LA  - ru
ID  - ZNSL_2006_337_a8
ER  - 
%0 Journal Article
%A A. S. Zhuk
%A V. V. Zhuk
%T On approximating periodic functions using linear approximation methods
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 134-164
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a8/
%G ru
%F ZNSL_2006_337_a8
A. S. Zhuk; V. V. Zhuk. On approximating periodic functions using linear approximation methods. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 134-164. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a8/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., 1965

[2] A. Zigmund, Trigonometricheskie ryady, T. 1, M., 1965

[3] V. V. Zhuk, “Ob odnom metode summirovaniya ryadov Fure. Ryady Fure s polozhitelnymi koeffitsientami”, Issledovaniya po nekotorym problemam konstruktivnoi teorii funktsii, Sb. nauchn. trudov Leningr. mekh. in-ta, 50, 1965, 73–92

[4] V. V. Zhuk, “O priblizhenii $2\pi$-periodicheskoi funktsii lineinym operatorom”, Issledovaniya po nekotorym problemam konstruktivnoi teorii funktsii, Sb. nauchn. trudov Leningr. mekh.in-ta, 50, 1965, 93–115

[5] N. S. Zhuk, Koeffitsienty Fure i nailuchshie priblizheniya periodicheskikh funktsii neskolkikh peremennykh s neotritsatelnymi koeffitsientami Fure, Dep. v VINITI 26.03.91, No 1318–V91, L., 1991, 10 pp.

[6] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, L., 1982 | MR

[7] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii, T. 1, M., 1969

[8] Collected papers of G. H. Hardy, Vol. 3, Oxford, 1969

[9] V. V. Zhuk, “Dopolneniya k formule summirovaniya Puassona i k teoreme Khardi–Yunga”, Vestn. S.-Peterburg. un-ta. Ser. mat., mekh., astronom., 2:8 (1992), 8–15 | MR

[10] V. V. Zhuk, G. I. Natanson, Trigonometricheskie ryady Fure i elementy teorii approksimatsii, L., 1983 | MR

[11] T. P. Dubova, G. I. Natanson, “Ob odnom neravenstve v teorii silnoi approksimatsii”, Vestn. S.-Peterburg. un-ta, Ser. mat., mekh., astronom., 3:15 (1992), 86–89 | MR

[12] N. Akhiezer, Lektsii po teorii approksimatsii, Kharkov, 1940

[13] V. V. Zhuk, Silnaya approksimatsiya periodicheskikh funktsii, L., 1989 | MR

[14] J. Marcinkiewicz, Collected papers, Warsawa, 1964 | MR | Zbl

[15] A. N. Podkorytov, Teorema Feiera–Martsinkevicha v mnogomernom sluchae, Dep. v VINITI 1.02.77, No 368-77, L., 1976, 11 pp.

[16] I. P. Natanson, Konstruktivnaya teoriya funktsii, M.–L., 1949 | Zbl

[17] N. K. Bari, Trigonometricheskie ryady, M., 1961 | MR | Zbl